

Reminder: EW interactions...

Are based on invariance under local $SU(2) \times U(1)_Y$ transformations. Note: left– and right–handed fields transform differently, e.g.

$$L_e \equiv \left(\begin{array}{c} \nu_{eL} \\ e_L \end{array}\right) : \text{ doublet under } SU(2);$$

 e_R : singlet under SU(2).

Invariance under local $SU(2) \times U(1)_Y$ transformations fixes the form of the electroweak interactions completely. $SU(2) \times U(1)_Y$ invariance cannot be an exact symmetry of Nature: it must be broken!

How to break SU(2)xU(1)_Y

Introduce scalar SU(2) doublet "Higgs field" $\phi = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix}$

Introduce scalar potential $V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda \left(\phi^{\dagger} \phi\right)^2$

Higgs field likes to sit at minimum of potential: acquires vacuum expectation value (vev)

$$\langle \phi
angle = \left(egin{array}{c} v \\ 0 \end{array}
ight) \ \ {\rm with} \ v = \sqrt{2\mu^2}/\lambda$$

Vacuum is not $SU(2) \times U(1)_Y$ invariant (even though \mathcal{L} is): symmetry is broken *spontaneously*!

