

FFT Normalisation for Beginners (really it's just for me)

Ryan Nichol

Parseval's Theorem

$$\sum_{i=0}^{N-1} V_i^2 = \frac{1}{N} \sum_{i=0}^{N-1} |H_i|^2$$

- V_i are the (real) voltage samples in the time domain

- H_i are the (complex) FFT values
- Parseval's theorem should be true for any well behaved FFT algorithm.
- It can be used to relate the normalisation of the FFT to the time domain.

Power in the Time Domain

• Many ways to define total power in wave:

(a)
$$\sum_{i=0}^{N-1} V_i^2 \equiv \text{"sum squared amplitude"}$$

(b)
$$\frac{1}{N} \sum_{i=0}^{N-1} V_i^2 \equiv \text{"mean squared amplitude"}$$

(c)
$$\Delta t \sum_{i=0}^{N-1} V_i^2 \equiv \text{"time-integral squared amplitude"}$$

- "Interesting" Properties for non-periodic signals:
 - Zero-padding/increasing timespan
 - (a) doesn't change, (b) does change, (c) doesn't change
 - Changing sampling rate for same timespan
 - (a) does change, (b) doesn't change, (c) doesn't change

Power in Frequency Domain

(a)
$$\sum_{i=0}^{N-1} V_i^2 = \frac{1}{N} \sum_{i=0}^{N-1} |H_i|^2$$

(b)
$$\frac{1}{N} \sum_{i=0}^{N-1} V_i^2 = \frac{1}{N^2} \sum_{i=0}^{N-1} |H_i|^2$$

(c)
$$\Delta t \sum_{i=0}^{N-1} V_i^2 = \frac{\Delta t}{N} \sum_{i=0}^{N-1} |H_i|^2$$

- Points to note:
 - All are valid, but must be interpreted correctly
 - (b) is what the Tektronix scope performs
 - But it is really useful for periodic (i.e CW) signals, hence the • name.
 - (c) is probably best for characterising impulses as the sum stays the same when either sampling rate and timespan (or zero pad amount) are changed. 4

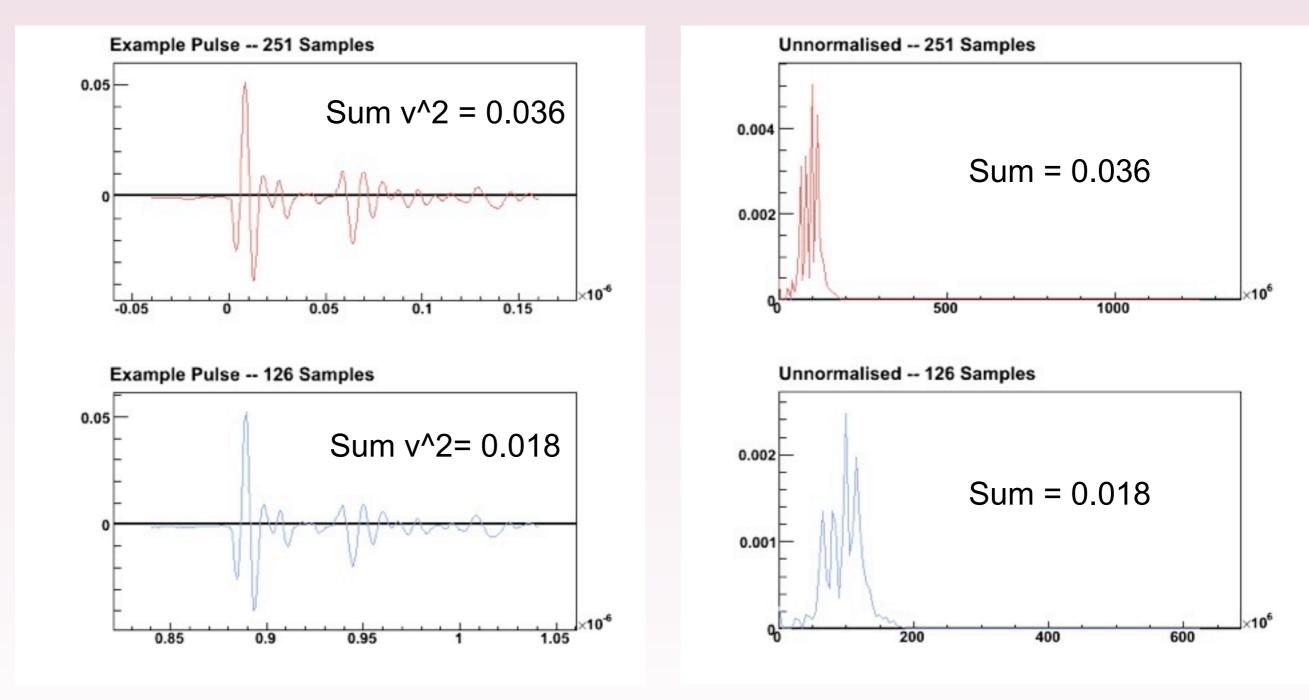
However using (c)...

- With this normalisation the sum remains constant
 - But changing N (zero padding, etc.) changes the number of frequency bins --> so the values in the bins must change.
 - In order to compare the bin values between two FFT with different N, need to divide by Δf .
 - Then need to change the summation to an integral to retain physical meaning for the power.
 - Therefore (in my opinion) the correct normalisation is:

$$y_i = \frac{\Delta t}{N\Delta f} |H_i|^2 = \Delta t^2 |H_i|^2$$

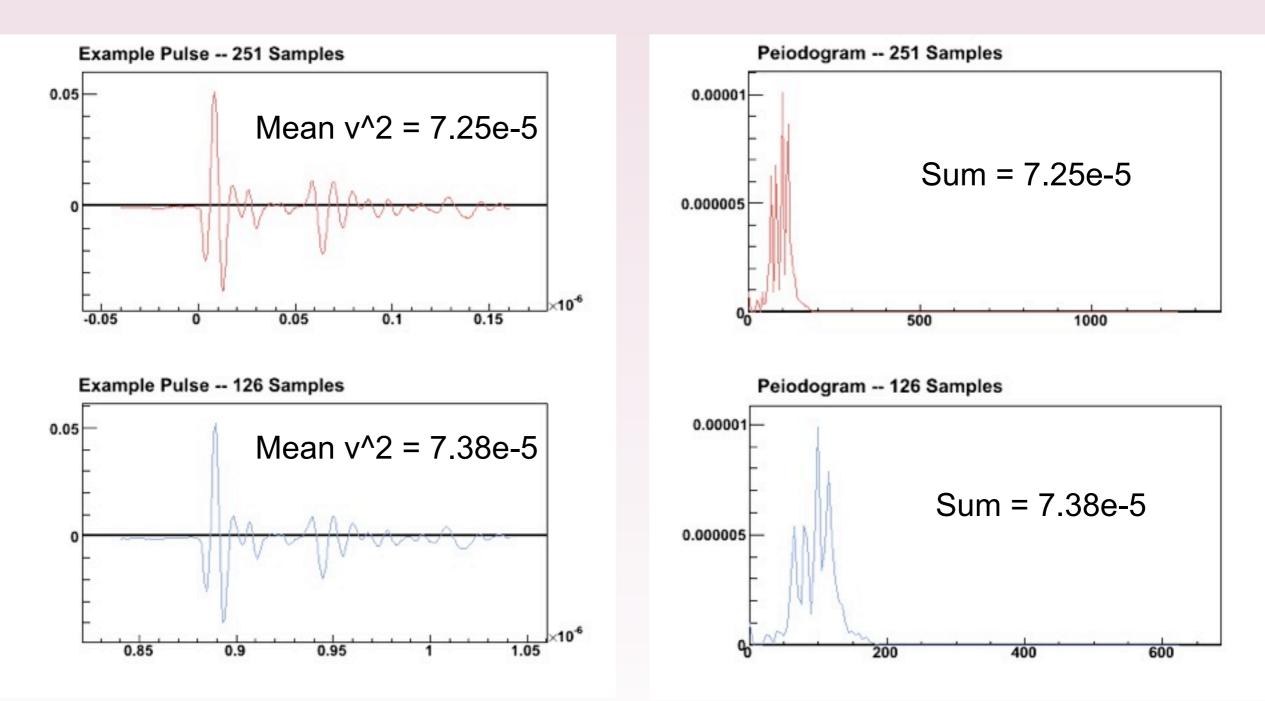
- But one must integrate (i.e times each bin by Δf) when computing the total power (or power in a frequency range).
- And of course this is just normalised to the area under the voltage squared curve.

Un-normalised FFT -- Summed Power

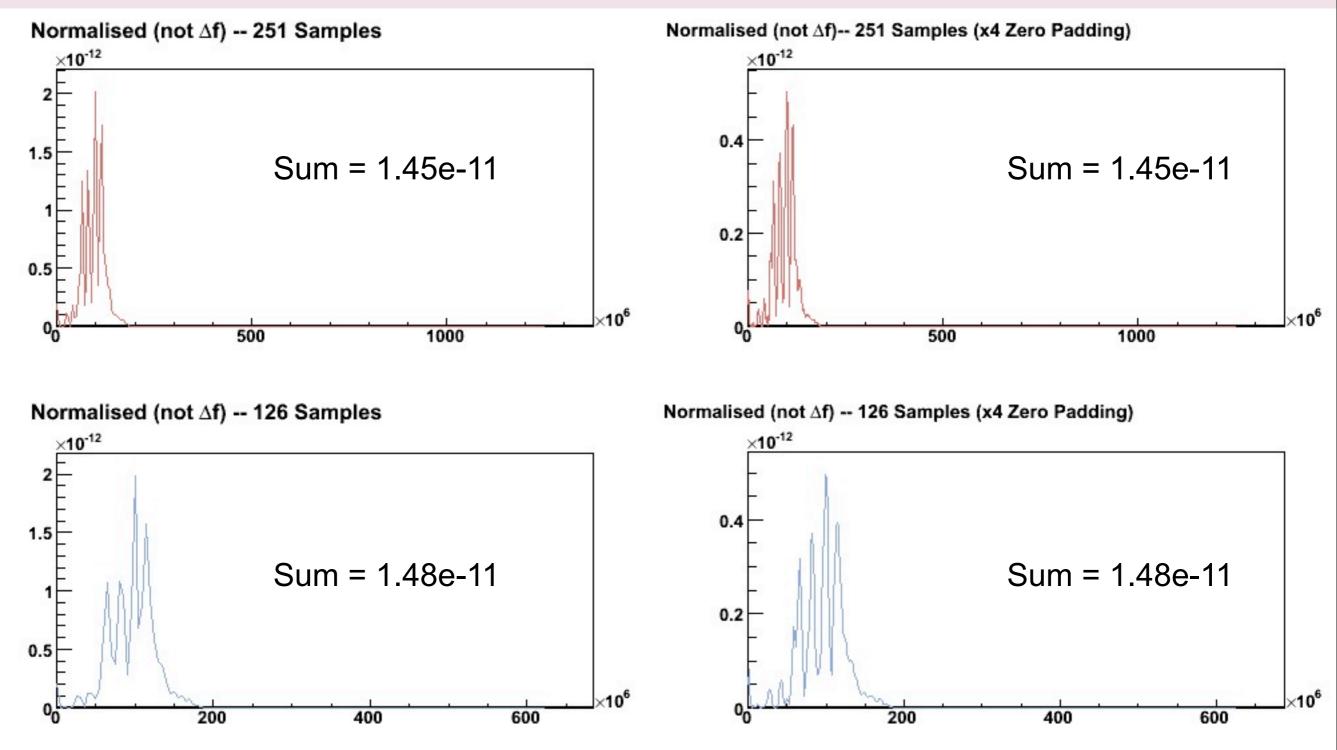


UCL

Line Constraints C

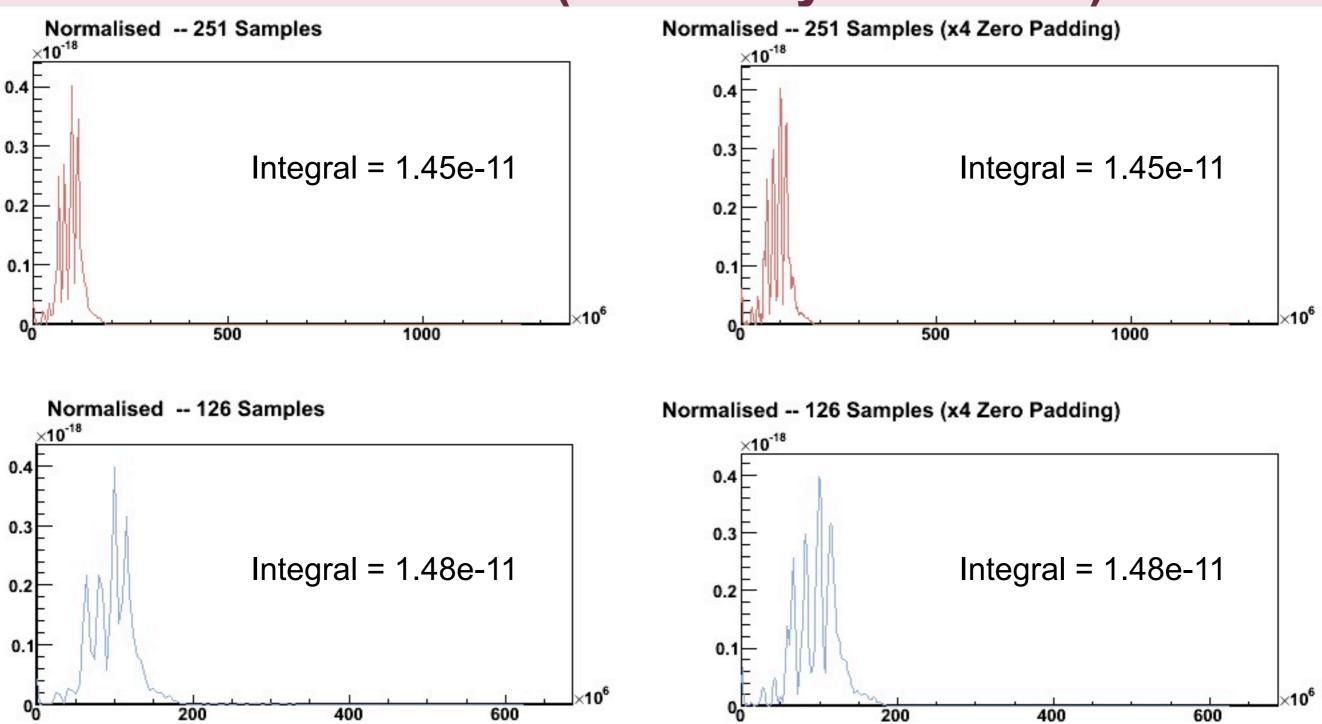


Normalised (not scaled by bin width)



UC

Normalised (scaled by bin width)



UC