UCL

NEMO-3 and SuperNEMO

A search for zero neutrino double beta decay

Robert L. Flack University College London

On behalf of the NEMO-3/SuperNEMO collaborations

NOW 2010

Why event reconstruction is useful

•If we observe $0\nu\beta\beta$ then studying the 2e, 1e energy + angular distributions will give information about the production mechanism.

Neutrino Ettore Majorana Observatory

Fréjus Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², d ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (d = 18 cm)

Neutron shield: 30 cm water (ext. wall)

40 cm **WOOd** (top and bottom) (since march 2004: water + boron)

Event reconstruction

Observables of the final state

- Trajectories of the 2 electrons
- Energies of the 2 electrons
- Time of flight

Backgrounds are measured using event <u>topology</u> and <u>timing</u> to produce a background model for $\beta\beta$ <u>NIM A606 (2009) 449-465.</u>

- Curvature of the tracks in a B-field (+ or -).

100 Mo $2\nu\beta\beta$ updated result

 $T_{1/2}(2\nu) = [7.17 \pm 0.01(\text{stat}) \pm 0.54(\text{sys})] \times 10^{18} \text{ yr} \Rightarrow \sim 3.5 \text{ yr}, \text{ Phase II (low Rn), S/B} = 76$ $M^{2\nu}(^{100}\text{Mo}) = 0.126 \pm 0.006$

This is an update of a previous published result using phase I data

Phys. Rev. Lett. 95 182302 (2005)

 $T_{1/2}(2\nu\beta\beta) = 7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (syst)} \times 10^{18} \text{ years, S/B} = 40$

7 September 2008

2vββ results for other isotopes (preliminary)

Many more results available. Excited states, 0v for different mechanisms and isotopes

0vββ for ¹⁰⁰Mo(~7kg) and ⁸²Se (~1kg)

[2.8-3.2] MeV: DATA = 18; MC = 16.4 \pm 1.4 T_{1/2}(0v) > 1.0×10²⁴ yr at 90%CL <m_v> < (0.47 - 0.96) eV

V+A: $T_{1/2}(0v) > 5.4 \times 10^{23}$ yr at 90%CL $\lambda < 1.4 \times 10^{-6}$ Majoron: $T_{1/2}(0v) > 2.1 \times 10^{22}$ yr at 90%CL $g_{ee} < 0.5 \times 10^{-6}$

[2.6-3.2] MeV: DATA = 14; MC = 10.9 \pm 1.3 T_{1/2}(0v) > 3.2×10²³ yr at 90%CL <m_v> < (0.94 - 2.5) eV

 $\lambda < 1.4 \times 10^{-6}$ g_{ee} $< 0.5 \times 10^{-4}$ World's best result!

7 September 2008

SuperNEMO Collaboration

~ 100 physicists, 10 countries, 27 Institutions

Objectives of the 4 year R&D programme

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se or other
7 kg	isotope mass M	100+ kg
18 %	efficiency ɛ	~ 30 %
²⁰⁸ Tl: ~ 100 μBq/kg ²¹⁴ Bi: < 300 μBq/kg Rn: 5 mBq/m ³	internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the ββ foil Rn in the tracker	$208 \text{Tl} \le 2 \mu \text{Bq/kg}$ if ⁸² Se: ²¹⁴ Bi $\le 10 \mu \text{Bq/kg}$ Rn $\le 0.15 \text{ mBq/m}^3$
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2}(\beta\beta0\nu) > 2 \ge 10^{24} \text{ y}$ $< m_{\nu} > < 0.3 - 0.9 \text{ eV}$		$T_{1/2}(\beta\beta0\nu) > 1 \ge 10^{26} y$ $< m_{\nu} > < 0.04 - 0.11 eV$
September 2008	Robert Flack NOW2010	9

Calorimeter R&D to improve energy and time resolution Each module will have 550 PMTs + scintillator blocks

Scintillator

- Material
- Shape
- Size
- Coating

PMT

- QE
- Uniformity
- Collection efficiency
- Radiopurity

Required resolution demonstrated with 28cm Hex block (≥10cm thick) directly coupled to 8" PMT

$FWHM = 4\% @ Q_{\beta\beta} = 3 MeV$

Tracker R&D

To optimise the length, diameter, material for the wire, readout and gas mixture

Constructed several prototype single cells of differing lengths and diameters. Then progressed to a 9-cell to look at the configuration of the fields and cross-talk. From this work a 90-cell prototype was constructed.

Transverse 0.7mm, longitudinal 1cm Overall cell efficiency of >98%

Cosmic muon used for testing of reconstruction algorithm

7 September 2008

Wiring robot

For the full 20 modules in excess of 0.5M wires will need to be strung.

A wiring robot is being developed at the Mullard Space Science Laboratory.

The wiring will be carried out in a clean-room environment with as little human intervention as possible.

Protoype robot being developed at MSSL

Production of the ββ Source Foil

- Preferred candidate for the source is ⁸²Se (others being investigated).
 Enrichment of 100 kg by centrifugation is possible.
- •The density on the foil is $40-50 \text{ mg/cm}^2$.
- •Radio-purity: 208 Tl < 2 μ Bq/kg, 214 Bi < 10 μ Bq/kg

•Chemical and physical purification methods

Dedicated BiPo detector to measure low radio-purity levels

7 September 2008

• Outfitting completed, Lab ready to host experiments - 2013

Minimal scenario: 45,000m³ (100m long), 12M€ excavation + 3M€ outfitting

2^d ULISSE workshop in October. 11 LOIs received.

7 September 2008

Detector sensitivity

Using a GEANT-4 based model of the detector combined with NEMO-3 experience.

5yrs with 100kg ⁸²Se: $T_{1/2}(\beta\beta0\nu) > 1 \ge 10^{26} \text{ y}$ $< m_{\nu} > < 0.05 - 0.1 \text{ eV}$

A SuperNEMO module

20 modules having a Planar design: Each module will have 5kg of enriched isotope Making a total of 100 kg.

Submodule calorimeter Source and calibration

2 m (assembled, ~0.5m between source and calorimeter)

Submodule tracker

Closed

Source 2.7m

Open

Ist SuperNEMO module - Demonstrator

- Demonstrate that mass production is possible.
- Study the backgrounds with an emphasise on radon emanation.

SuperNEMO schedule highlights

- NEMO-3 decommissioning early 2011
- Demonstrator construction 2010-2012
- Demonstrator physics run start-up 2013
- Full detector construction start-up 2014
- Target sensitivity (~0.05 eV) 2019

KK claim to be verified with Demonstrator by 2015

BACKUP

NEMO 3 under construction at the LSM

ββ decay isotopes in NEMO-3 detector

NEMO-3 Backgrounds for $\beta\beta$

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Main bkg for $\beta\beta2\nu$ but negligeable for $\beta\beta0\nu$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

Compton + Möller

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

beta + Compton

source

foil

- > Radon (²¹⁴Bi) inside the tracking detector
 - deposits on the wire near the $\beta\beta$ foil
 - deposits on the surface of the $\beta\beta$ foil

Example: Radon inside the tracking detector

Monitoring of the Radon bkg every day

 \blacktriangleright Phase 1: Feb. 2003 \rightarrow Sept. 2004 **Radon Contamination**

600

54.70 / 51

0.1917E+05

0.3174E+05

0.6688 ±

16.31 ±

Fraction of non α events: 0.59±1.33%

800

162.9

16.05

0.1633

2.481

 $T_{1/2}=162.9 \ \mu s$

1000

0.1878E-01

0.2284E+05

▶ Phase 2: Dec. $2004 \rightarrow \text{Today}$ A (Radon) $\approx 5 \text{ mBq/m}^3$

Radon trapping facility (First developed for SuperKamiokande)

Phase I : February 2003 – September 2004 (radon background in data) $\sim 10 \nu\beta\beta$ -like event/y/kg with 2.8 < E₁+E₂ < 3.2 MeV Phase II : since October 2004 (radon level reduced by a factor of 6)

1 ton of charcoal @ -50° C, 9 bars air flux = 150 m³/h Input: A(²²²Rn) 15 Bq/m³

Output: A(²²²Rn) < 15 mBq/m³ !!! reduction factor of 1000

Inside the NEMO 3 tent: factor of 100 - 300Inside NEMO 3: almost factor of $10 \text{ A}(^{222}\text{Rn}) \approx 6 \text{ mBq/m}^3$ Neutrinos are massive and they mix

What else do we want to know?

Number of neutrinos: Are there sterile neutrinos?

Absolute neutrino mass value. Only limits so far.
 Tritium: m_{v_i} < 2.3 eV Cosmology: $\sum m_{v_i}$ < 1 eV
</p>

Neutrino mass spectrum: Normal (m₁ < m₂ < m₃) Inverted (m₃ < m₁ < m₂) or Quasi-degenerate (m₁≈m₂≈m₃)?

✓ Origin of matter-antimatter asymmetry. CP-violation in lepton sector: $\delta \neq 0,\pi$ and/or $\alpha,\beta \neq 0,\pi$?

Nature of Neutrinos: Majorana (v = anti-v) or Dirac (v ≠ anti-v)? Full lepton number violation (required in most Grand Unification Theories). addressed by 0vββ decay

Physics Studies

Full chain of GEANT-4 based software + detector effects * <u>NEMO3 experience</u>

5 yr with 100kg of ⁸²Se: T_{1/2} > 10^{26} yr, <m_V> < 50-100 meV at 90%CL with target detector parameters

Much more than 1 result!
Other mechanisms: V+A, Majoron, etc
Disentangling <m_V> and V+A: arXiv: 1005.1241
ββον(and 2ν) to excited states

Open-minded search for any $0\nu\beta\beta$ mechanism

