Electroweak interactions

3224 Nuclear and Particle Physics Ruben Saakyan UCL

Charged and Neutral currents

Neutral currents were predicted by electroweak theory Experimentally observed only in 1973 Both W, Z – spin–1 bosons (force carriers of weak interaction)

The unification of weak and FM interactions becomes Tuesday, 10 March 2009

The first neutral current event (1973)

Symmetries of the weak interaction Parity (P) Charge conjugation

Charge conjugation (C) $e^- \longrightarrow e^+$ $\pi^+ \longrightarrow \pi^-$

For a long time parity conservation believed to be a universal law of nature Lee and Yang suggested (1956) that there was no evidence for parity conservation in weak interactions.

Experimental evidence for parity violation β-decay of polarised ⁶⁰Co (Wu *etc*, 1957)

Experimental evidence for parity violation β-decay of polarised ⁶⁰Co (Wu *etc*, 1957)

- ⁶⁰Co was placed inside a solenoid and cooled to 0.01K to align nuclear spin parallel to the field direction
- Parity violation is established by the observation a forwardbackward decay asymmetry
- A shocking event and

Symmetries of the weak interactions

- Charge conjugation, C, is also not conserved in weak interactions
- C- and P-violation effects have their origin in the spin dependence of weak interactions
- C- and P-violation are large effects, BUT the combination of the two, CP-invariance, is almost exactly conserved
- Tiny CP-violation is enormously important. First hints in K's decays (see later). Now and in future focus on CP-violation studies in other hadrons and neutrino sector

C- and P- violation in muon decay

• C- transforms μ^- decay to μ^+ Angular distribution of electrons and positrons in the decays of polarized muons

- Γ₊=Γ₋, and ξ₊=ξ₋
 P- preserves the particle id but
 - P- preserves the particle id but reverses their momenta while leaving their spins unchanged:

$$\Gamma_{\mu\pm}(\cos\theta) = \Gamma_{\mu\pm}(-\cos\theta)$$

Hence $\xi_{\pm} = 0$

• Experiment: Lifetimes the same, BUT: $\xi_{-}=-\xi_{+}=1.00\pm0.04$

CP-invariance

- Why do the μ^+ and μ^- have the same lifetime if C-invariance is violated? \Rightarrow CP-conservation
- CP- operator applied to muon decay changes θ to π–θ and particle to antiparticle, i.e. CPinvariance implies

 $\Gamma_{\!\mu\!+}(\text{cos}\theta)\!=\!\Gamma_{\!\mu\!-}(-\text{cos}\theta)$

- Hence $\Gamma_{+} = \Gamma_{-}$ and $\xi_{+} = -\xi_{-}$ which is exactly what is observed!
- Tiny deviations from CP-invariance are very important!

Spin structure of the weak interactions Neutrinos

Goldhaber experiment (1958) to measure neutrino's helicity

 $^{152}\text{Sm}^*(J=1) \rightarrow ^{152}\text{Sm}(J=0) + \gamma$

- The helicity of v_e was deduced from the measured helicity of the photon by applying angular momentum conservation
- The polarization of the photons was determined e^- + $^{152}\text{Eu}(J{=}0) \rightarrow ^{152}\text{Sm}^*(J{=}1)$ + $\nu_{\mbox{from their absorption in}}$ magnețized iron
 - Only left-handed v's observed

Goldhaber experiment (1958) to measure neutrino's helicity

 $^{152}\text{Sm}^*(J=1) \rightarrow ^{152}\text{Sm}(J=0) + \gamma$

- The helicity of v_{e} was deduced from the measured helicity of the photon by applying angular momentum conservation
- The polarization of the photons was determined e^- + $^{152}\text{Eu}(J{=}0) \rightarrow ^{152}\text{Sm}^*(J{=}1)$ + $\nu_{\mbox{from their absorption in}}$ magnețized iron
 - Only left-handed v's observed

V-A interaction

- The spin dependence of weak interactions is represented by V-A interaction.
- V denotes a proper vector (momentum, **p**)
- A is an axial vector, whose direction is unchanged by parity transformation (angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$)
- Only V-A observed in weak interactions
- Because v's have very small (in SM zero) mass they are always left-handed.
- For other particles it is true in ultrarelativistic limits. In this case the contribution of the "forbidden" helicity states (e-R, e+L) are suppressed by factors

Pion decay and spin structure

- If I = µ, muon is non-relativistic ⇒ both helicity states are allowed
- If I = e, positron is relativistic \Rightarrow this
- $\pi^+ \rightarrow I^+ + \nu_I$ $I = e, \mu$ mode is suppressed by
- Experiment: $\frac{\Gamma(\pi^+ \rightarrow e^+ v_e)}{\Gamma(\pi^+ \rightarrow \mu^+ v_\mu)} = 426 h^8/m_{\pi} p_1 4 \times 10^{-4}$

which is in excellent agreem and with calculation if difference in

Pion decay and spin structure

muons are always emitted polarized!

- If $I = \mu$, muon is non-relativistic \Rightarrow both helicity states are allowed
- If I = e, positron is relativistic \Rightarrow this

 $\pi^+ \rightarrow I^+ + \nu_I$ $I = e, \mu$ mode is suppressed by

Experiment: $\frac{\Gamma(\pi^+ \rightarrow e^+ v_e)}{\Gamma(\pi^+ \rightarrow \mu^+ v_\mu)} = 42.0 \text{ for } 8/14 \times 10^{-4}$

which is in excellent agreem and the calculation if difference in

Muon decay and spin structure

Highest energy e⁻ a emitted in the direc - eopposite to v_{μ} and

 $K^0 - \overline{K}^0$ mixing

$$K^{0} = d\overline{s} (S = +1) \quad \overline{K}^{0} = s\overline{d} (S = -1)$$

However, because S is not conserved in weak interactions

these states gan be converted into each other, e.g.

interactions. For example p and p can not mix since baryon number

must be conserved

Thus the observed physical particles correspond not to Tuesday, 10 March 2009

 $K^0 - \overline{K}^0$ mixing

First, assume that CP is conserved exactly:

$$C \Psi_{K^{0}}(\vec{p}) = -\Psi_{\bar{K}^{0}}(\vec{p}), \quad C \Psi_{\bar{K}^{0}}(\vec{p}) = -\Psi_{K^{0}}(\vec{p})$$
$$P \Psi_{K^{0}}(\vec{p} = \vec{0}) = -\Psi_{K^{0}}(\vec{p} = \vec{0}), \quad P \Psi_{\bar{K}^{0}}(\vec{p} = \vec{0}) = -\Psi_{\bar{K}^{0}}(\vec{p} = \vec{0})$$
Then

$$CP\psi_{K^0}(\vec{p}=\vec{0})=\psi_{\vec{K}^0}(\vec{p}=\vec{0}), \qquad CP\psi_{\vec{K}^0}(\vec{p}=\vec{0})=\psi_{K^0}(\vec{p}=\vec{0})$$

From here we can derive

$$\begin{split} \Psi_{K_1^0}(\vec{p} = \vec{0}) &= \frac{1}{\sqrt{2}} \left\{ \Psi_{K^0}(\vec{p} = \vec{0}) + \Psi_{\vec{K}^0}(\vec{p} = \vec{0}) \right\} \\ \Psi_{K_2^0}(\vec{p} = \vec{0}) &= \frac{1}{\sqrt{2}} \left\{ \Psi_{K^0}(\vec{p} = \vec{0}) - \Psi_{\vec{K}^0}(\vec{p} = \vec{0}) \right\} \end{split}$$

with

$$CP\psi_{K_1^0}(\vec{p}=\vec{0})=\psi_{K_1^0}(\vec{p}=\vec{0}), \qquad CP\psi_{K_2^0}(\vec{p}=\vec{0})=-\psi_{K_2^0}(\vec{p}=\vec{0})$$

$$K^{0} - \overline{K}^{0} \text{ mixing}$$
If CP is conserved
$$K_{1}^{0} \text{ should decay entirely to}$$

$$K_{2}^{0} \text{ with CP} = 1$$

$$K_{2}^{0} \text{ should decay entirely to}$$

$$states$$

$$with CP = -1$$

We will see now that 2π final states of K-decay have CP=+1 while 3π final state have CP = -1. Hence $K_1^0 \otimes \pi^+\pi^-, \pi^0\pi^0$ and $K_2^0 \otimes \pi^+\pi^-\pi^0, \pi^0\pi^0\pi^0$ allowed by CP-conservation $K_1^0 \otimes \pi^+\pi^-\pi^0, \pi^0\pi^0\pi^0$ and $K_2^0 \otimes \pi^+\pi^-, \pi^0\pi^0$ forbidden by CP-conservation

 $K \rightarrow 2\pi$

Consider $K^0 \otimes \pi^0 \pi^0$

Since K has spin-0, the pion pair must have zero orbital angular momentum in the rest frame of

the $P = P^2(-1)^L = 1$ where $P_{\pi} = -1$ is the intrinsic parity of pion decaying particle. Therefore its parity is The C parity $G_{\pi}(C_{\pi})^2 = 1$ where $C_{\pi} = 1$ is the parity of π^0

The C-parity $i = (C_{\pi^0})^2 = 1$ where $C_{\pi^0} = 1$ is the parity of π^0

Hence CP = +1 (the same is for $K^0 \rightarrow \pi^+\pi^-$)

 $K \rightarrow 3\pi$

 $\vec{L} = \vec{L}_{12} + \vec{L}_3 = \vec{0} \quad \text{since the decaying particle has spin-0}$ This means $L_{12} = L_3$ and $P = P_{\pi}^3 (-1)^{L_{12}} (-1)^{L_3} = -1 \quad \text{for } \pi^0 \pi^0 \pi^0 \quad \text{final state and } C = (C_{\pi^0})^3 = 1$

Hence CP = -1 (the same for $\pi^+\pi^-\pi^0$)

K-long and K-short

Experimentally, two neutral kaons were observed: short, K_s^0 ($\tau = 0.89 \times 10^{-10}$ s), and long-lived, K_L^0 ($\tau = 0.52 \times 10^{-7}$ s)

The major pion decay modes were: $K_S^0 \rightarrow 2\pi$ and $K_L^0 \rightarrow 3\pi$

So they were identified as

$$K_S^0 = K_1^0$$
 $K_L^0 = K_2^0$

CP-violation in kaon sector

In 1964 $K_L^0 \rightarrow \pi^+\pi^-$ was observed with a tiny branching ratio of ~ 10⁻³. Since CP(K_L^0) must be –1, this is an evidence for a small CP-violation. Thus, physical states K_S^0 and K_{p}^0 need 1 $\Psi_{\kappa_0^0}(\vec{p}=\vec{0}) = (\vec{p}=\vec{0}) - \epsilon \Psi_{\kappa_0^0}(\vec{p}=\vec{0})$ not correspond to K_1^0 and K_2^0

$$\Psi_{K_{L}^{0}}(\vec{p}=\vec{0}) = \frac{1}{\sqrt{(1+|\varepsilon|^{2})}} \left[\varepsilon \Psi_{K_{1}^{0}}(\vec{p}=\vec{0}) + \Psi_{K_{2}^{0}}(\vec{p}=\vec{0}) \right]$$

where ϵ is a small complex parameter

CP-violation in kaon sector

- CP-violating decays can occur in two different ways
 - (a) CP-forbidden K_1^0 component in the K_L^0 decays via a CP-allowed process giving a contribution proportional to $|\epsilon|^2$ of finding K_1^0 component in K_L^0
 - (b) CP-allowed K₂⁰ component in the K_L⁰ decays via a CP-violating reaction
- Detailed analysis shows (a) dominates with |ε|
 ≈2.2×10⁻³
- Nowadays mixing in BB is also under study

Strangeness oscillations

- K⁰ K⁰ mixing leads to strangeness oscillations
- If K⁰ is produced with S=+1, then after traveling some distance L (or after some time t) it will no longer have definite S but components with both S=+1 and S=-1.
- This enables to measure mass difference between K_S^0 and K_L^0 with extraordinary precision
- The oscillations in kaon sector made Bruno Pontecorvo think and come up with the neutrino oscillations idea

Strangeness oscillations

Consider K⁰ produced in $\pi^- + p \rightarrow K^0 + \Lambda^0$ t = 0 when K⁰ produced S = 0 0 1 -1

$$\Psi_{K^{0}}(\vec{p}) = \frac{1}{\sqrt{2}} \left\{ \Psi_{K^{0}_{S}}(\vec{p}) + \Psi_{K^{0}_{L}}(\vec{p}) \right\}$$

At later times this will become

$$\begin{split} \Psi_{K^{0}}(\vec{p}) &= \frac{1}{\sqrt{2}} \left\{ a_{S}(t) \Psi_{K_{S}^{0}}(\vec{p}) + a_{L}(t) \Psi_{K_{L}^{0}}(\vec{p}) \right\} \quad \text{where} \quad a_{\alpha}(t) = e^{-im_{\alpha}t} e^{-\Gamma_{\alpha}t/2} \quad (\alpha = S, L) \\ m_{\alpha} \text{ and } \Gamma_{\alpha} \text{ are the mass and decay rate of the particle} \\ \text{For times } t \text{ such that } \tau_{S} \ll t \leq \tau_{L} \quad (\tau_{S,L} = \Gamma_{S,L}^{-1}) \text{ only } K_{L}^{0} \text{ component survives} \\ \text{impying equal intensities } K^{0} \text{ and } \overline{K}^{0} \text{ components.} \\ \text{We can rewrite } \Psi_{K^{0}}(\vec{p}) \text{ as} \\ \left\{ A_{0}(t) \Psi_{K^{0}}(\vec{p}) + \overline{A}_{0}(t) \Psi_{\overline{K}^{0}}(\vec{p}) \right\} \\ \text{where } A_{0}(t) = \frac{1}{2} \left[a_{S}(t) + a_{L}(t) \right], \quad \overline{A}_{0}(t) = \frac{1}{2} \left[a_{S}(t) - a_{L}(t) \right] \end{split}$$

Strangeness oscillations

The intensities of two components are then given by

$$I(K^{0}) \equiv \left|A_{0}(t)\right|^{2} = \frac{1}{4} \left[e^{-\Gamma_{S}t} + e^{-\Gamma_{L}t} + 2e^{-(\Gamma_{S}+\Gamma_{L})t/2}\cos(\Delta mt)\right]$$
$$I(\overline{K}^{0}) \equiv \left|\overline{A}_{0}(t)\right|^{2} = \frac{1}{4} \left[e^{-\Gamma_{S}t} + e^{-\Gamma_{L}t} - 2e^{-(\Gamma_{S}+\Gamma_{L})t/2}\cos(\Delta mt)\right]$$
where $\Delta m = \left|m_{S} - m_{L}\right|$

The variation of I(K⁰) with time can be determined experimentally by measuring the rate of production of hyperons (baryons with $S_{\overrightarrow{K}0} + p \rightarrow \pi^+ + \Lambda^0(\pi^0 + \Sigma^+)$

The result: $\Delta m = (3.522 \pm 0.016) \times 10^{-12} \text{ MeV/c}^2$

Discovery of W[±] and Z⁰ bosons (CERN, 1983) UA1 detector sketch and W event

 $\overline{p} + p \otimes W^+ + X^-$, $\overline{p} + p \otimes W^- + X^+$, $\overline{p} + p \otimes Z^0 + X^0$

1984 Nobel prize to Carlo Rubbia and Simon Van Der Meer

All leptonic decays conserve individual lepton numbers

W and Z bosons

Comparing $\alpha_w(1/400)$ and $\alpha_{EM}(1/137)$ we see that weak and EM interactions should have similar strength. The big difference at low energies is because exchange bosons, W,Z, are heavy

W and Z bosons

- At energies where $\lambda = (h/p) >> R_{W,Z}$, the range can be neglected
- In this approximation the weak interaction becomes a point or zero range interaction with effective strength

•
$$\alpha_{\text{eff}} = \alpha_{W} (E/M_{W}c^{2})^{2}$$
, $E << M_{W}c^{2}$

- where E is a typical energy scale of the process
- At energies on the scale of W,Z boson masses weak interaction strength becomes comparable to EM interaction strength

Weak interactions of hadrons

• W-bosons emitted or absorbed by quarks

Lepton-quark symmetry of weak interactions. The idea.

Taking for simplicity 2 generations

Lepton-quark symmetry. The problem.

- Lepton-quark symmetry implies that $d+\overline{u} \rightarrow W^-$, $s+c \rightarrow W^-$ "allowed" while $s+\overline{u} \rightarrow W^-$, $d+c \rightarrow W^-$ "forbidden"
- This works fine for many decays $(\pi \rightarrow \mu \nu_{\mu})$
- However, many "forbidden" decays are observed although at rates suppressed compared to "allowed" decays Example: $K^- \rightarrow \mu^- + \nu_{\mu}$

In order to solve this problem quark mixing was introduced

Quark mixing

 d and s quarks participate in the weak interactions via the linear combinations (recall neutrino and kaon mixing)

d' = d $\cos\theta_{\rm C}$ + s $\sin\theta_{\rm C}$

s' = -d $\sin\theta_{\rm C}$ + s $\cos\theta_{\rm C}$

 $\theta_{\rm C}$ – Cabibbo angle

 Thus, lepton-quark symmetry is assumed to apply to the doublets

$$\begin{pmatrix} u \\ d' \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} c \\ s' \end{pmatrix}$$

Quark mixing

 $\theta_{C} = 13^{\circ}$, providing good agreement with $K \rightarrow \mu v_{\mu}$ and other suppressed rate decays

Charmed quark prediction

- By 1971 seven fundamental fermions were known: v_e , e, v_μ , μ , u, d, s
- Glashow, Iliopolous and Maiani proposed the existence of c-quark to complete the set

$$\begin{bmatrix} u \\ d \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} \begin{bmatrix} v_e \\ e^- \end{bmatrix} \begin{bmatrix} v_\mu \\ \mu^- \end{bmatrix}$$

 The charmed quark was discovered in 1974. Its measured weak couplings are consistent with the predictions of lepton-quark symmetry and quark mixing

Quark mixing. Modern picture.

Now we know there are 3 generat $\begin{bmatrix} v_e \\ i \rho n \end{bmatrix} s \begin{bmatrix} v_{\mu} \\ \mu^{-} \end{bmatrix} \begin{bmatrix} v_{\tau} \\ \tau^{-} \end{bmatrix}$ $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$

CKM matrix

 $CKM = \begin{pmatrix} c_1 & c_3 s_1 & s_1 s_3 \\ -c_2 s_1 & c_1 c_2 c_3 - s_2 s_3 e^{i\delta} & c_1 c_2 s_3 + c_3 s_2 e^{i\delta} \\ s_1 s_2 & -c_1 c_3 s_2 - c_2 s_3 e^{i\delta} & -c_1 s_2 s_3 + c_2 c_3 e^{i\delta} \end{pmatrix} \quad c_i = \cos\theta_i \,, \quad s_i = \sin\theta_i$

 $\theta_{1,2,3}$ -- mixing angles (instead of θ_C in 2x2 matrix)

 δ -- CP-violating phase. \blacksquare Possibility to study CP-violation

MNS mixing matrix for neutrinos was built based on CKM recipe

Neutral currents and the unified electroweak theory

It was necessary to solve a problem associated with calculation of Feynman diagrams in which more than one W boson was exchanged (higher order processes) These calculations led to divergences – infinite probabilities for the W processes e^{-}

In the unified theory the problem was solved when diagrams involving the exchange of Z⁰ bosons and photons were taken into account. When all the diagrams of a given order are added together the

Unification condition

• To ensure the divergences cancellation, the theory requires the unification condition

$$\frac{e}{2\sqrt{2\varepsilon_0}}g_W\sin\theta_W = g_Z\cos\theta_W$$

• θ_W – weak mixing angle (Weinberg angle) is given by $\cos\theta_W \equiv M_W/M_Z$

Z^0 and γ couplings to leptons and quarks

Neutral current interactions, like EM interactions, individual quark numbers. Charged current intera do not.

In any process where γ is exchanged, Z⁰ can be exch Z⁰ contribution is not sizeable at low energies (E << but it is at high energies.

Standard Model, Gauge Invariance and Higgs.

Constructing the Standard Model

SM is a field theory. Describes force-matter interactions by Lagrangians.

Each force (EM, weak, strong) described by *L* of similar form (details of *F*, *D*, Ψ vary)

 $\Psi \to e^{-i\theta(x,t)}\Psi$

Lagrangian *L* obeys **local gauge invariance** Doesn't change as a function of space and time: Consequence that bosons *must be massless*

A few remarks about the Higgs boson

- Gauge invariance says that spin-1 gauge bosons must have zero mass if they are the only existing bosons
 - OK for QED and QCD but not for Weak. (W and Z are heavy!)
- This origin of mass problem is overcome by assuming that particles interact with the Higgs field
 - Gauge bosons acquire masses without violating gauge invariance
 - There are electrically neutral quanta of the Higgs field Higgs bosons (spin-0)
- Full SM Lagrangian:

A quasi-political Explanation of the Higgs Boson; for Mr Waldegrave, UK Science Minister 1993.

by David Miller (UCL)

Imagine the vacuum in the form of a cocktail party of political workers, uniformly spread across the room.

Imagine the vacuum in the form of a cocktail party of political workers, uniformly spread across the room.

The vacuum

Drawings by Georges Boixader.

Story by DJM

A beloved ex prime-minister enters and is immediately surrounded by well-wishers.

A beloved ex prime-minister enters and is immediately surrounded by well-wishers.

A beloved ex prime-minister enters and is immediately surrounded by well-wishers.

The cluster of admirers gives her extra mass, i.e. more inertia: just as an electron acquires extra mass from the lattice in a semiconductor; or the W and Z from the Higgs

A scandalous rumour is launched into the party.

A scandalous rumour is launched into the party.

The partygoers clump to transmit the rumour, just as they clumped around the ex-leaderine.

The partygoers clump to transmit the rumour, just as they clumped around the ex-leaderine.

The partygoers clump to transmit the rumour, just as they clumped around the ex-leaderine.

Similar "dilaton" effects occur in solids. The clump can travel like a particle.

In the vacuum such a clump in the Higgs field is a Higgs boson. It has spin=0.

We did not have quite enough energy to be sure

LHC will take over in ~2009. Finding H⁰ is one of the highest priorities in HEP

A few remarks about the Higgs boson

- The existence of the Higgs boson is the most important prediction of the Standard Model which has not been experimentally verified yet
- Extensive searches: LEP (CERN) $e^+e^- \rightarrow H^0Z^0$

saw some indication on H⁰ but not statistically convincing

 LHC will take over in ~2008. Finding H⁰ is one of the highest priorities in HEP

What if we do not see Higgs at LHC?..

Then..

- It does not exist
- Or it is too heavy to make

With E_{CM} = 14 TeV at LHC discovery is "guaranteed"

Many suggestions for **New Physics**. **Supersymmetry (SUSY)** is among favourites

Standard particles

SUSY particles

If no Higgs with m_H < 1 TeV there must be **New Physics** to keep WW scattering finite

