The NEMO experiment. Present and Future.

Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex

Neutrino Ettore Majorana Observatory

NEMO-III in Frejus

NEMO-III and CUORICINO to determine $\beta\beta$ sensitivity until 2008-10

The NEMO3 detector

Fréjus Undergroud Laboratory : 4800 m.w.e.

- Identification : e⁻, e⁺, γ, n and delayed-α
 - $\rightarrow \beta\beta$ events detection
 - \rightarrow Measurement of source radiopurity
 - \rightarrow Background rejection

- From scintil detector:
 - σ_{τ} = 250 ps
- From tracker:
 - $\sigma_{||} = 1 cm \quad \sigma_{\perp} = 0.45 mm \\ (using timing information \\ on plasma propagation)$

Calibration:

- Laser survey
- neutron Am/Be for
 - $\sigma_{||\,'}\,\sigma_{\!\!\perp},\,e^{\scriptscriptstyle +}$ signature
- e^{½ 207}Bi, ⁹⁰Sr for energy calibration
- γ ⁶⁰Co for time alignment

Trigger:

1 scintillator hit > 150 keV

+

1 track: few Geiger planes (flexible \rightarrow 3 – 7 Hz)

NEMO $\beta\beta$ events

NEMO background events

 $\gamma \rightarrow e^+e^-$

 e^{-} (~7 MeV) from ny

SOURCE DISTRIBUTION in NEMO 3

Pure materials:

Source foils measured with the NEMO-3 detector

- $^{208}TI < 2 \mu Bq/kg$
- ${}^{214}\text{Bi} < 2 \ \mu\text{Bq/kg}$
- neutrons $< 10^{-9}$ n cm⁻²s⁻¹

Radon in the detector

- ²²²Rn ~ 20 mBq/m³
- ²²⁰Rn ~ 1.6 mBq/m³

to be improved with new anti-radon shielding

Data taking

- June 2002: start with all 20 sectors, iron shielding, neutron shielding but...
- I ... still a lot of debugging (both tracking detector and calorimeter)
- □ 14 February 2003: start of routine data taking

NEMO-3 First Results ¹⁰⁰Mo

<u>2n 1200 h:</u>

 $T_{1/2} = [7.4 \pm 0.05(stat) \pm 0.8(sys)] \times 10^{18} yr$ (19000 events; S/B \approx 50)

<u>On:</u> Preliminary from 3800 h:

 $T_{1/2} > 2.3 \times 10^{23} \text{ yr} (90\% \text{ CL})$ $< m_n > < 0.6 \text{ eV} - 1.3 \text{ eV}$

World's best result for ¹⁰⁰Mo

Single State Dominance (SSD) VS Higher order State Dominance (HSD)

NEMO-3 First Results ¹⁰⁰Mo 1200 h

NEMO-3 First Results Other Isotopes

3000

93250

535

1276.

330.5

NEMO-3 Ονββ sensitivity 5 years

In case of full load of 82 Se (~14kg) <m_n > < 0.15 – 0.3 eV

From NEMO-III to SuperNEMO

- Very well known and working technology (15 yr of R&D experience)
- Successful detector operation and physics results with NEMO-II and NEMO-III
- □ Modest amount of isotope needed (100kg of ⁸²Se)
 - Current enrichment capabilities 30 kg/yr max
- □ Short time scale and modest price
 - 40-50 meV by 2014
 - 20-25 MEuros
- □ 3-5 December 1st SuperNEMO meeting in Orsay. EOI to national funding agencies in preparation

Which Isotope?

	Isotope	Q, MeV	2.0-			
	¹⁰⁰ Mo	3.033	1.5-			
	⁸² Se	2.995	1.0-			
	¹¹⁶ Cd	2.802	0.5-			
	¹³⁰ Te	2.529	0.0- 0	.0 0.2	0.4 0.6 0.8 1.0	
Fa Car	Factor of 10 lower BG for ⁸² Se $T_{1/2}^{2n}({}^{82}Se) \sim 10$ Can be produced in centrifuge - \$30K-\$50K/kg					

Energy Resolution and Sensitivity

Discovery potential for 2.0 $\langle m_n \rangle = 0.05 \text{ eV}$ (mass scale from \mathbf{Dm}^{2}_{atm}) 1.5 -In 5 yr: 1.0- $\underline{DE/E} = 14\%/\overline{OE}$ (NEMO-III) **SIGNAL** = 5 events 0.5 BG = 15 events 0.0 $\underline{\mathbf{DE}}/\underline{\mathbf{E}} = \underline{\mathbf{8}}\%/\underline{\mathbf{OE}}$ (R&D goal) 0.2 0.0 **SIGNAL** = 5 events **BG** = 0.6 events

SuperNEMO

Plastic scintillator walls: 20 m x 3 m x 0.1 m

4 supermodules, planar geometry 100 kg ⁸²Se ($Q_{bb} \sim 3$ MeV, long $T_{1/2}^{2n}$)

Boulby mine is the most attractive experimental site

Sensitivity ~0.04 eV in 5 yr Feasible if Zero BG experiment:

- 1) No BG from radioactivity the only possible BG from 2n tail (NEMO-III)
- 2) Improve DE/E from existing (14%-16%)/ÖE to (8%-10%)/ÖE R&D in UK and Dubna

SuperNEMO. Time Scale.

- 2004 2005:
 scintillator R&D
- 2006-2007: Development and characterization of 1st submodule
- 2007-2008: Start
 SuperNEMO installation
 (Boulby..?)
- 2009-2010: Start taking data
- 2014: planned sensitivity
 ~0.04 eV
- Excellent chance to be the first to reach 40-50 meV

Summary

- First anniversary of NEMO-III data taking approaching.
- □ So far: $< m_v > < 0.6 \text{ eV}$, precise 2v measurements for *several* isotopes
- $\Box < m_v > < 0.2 \text{ eV}$ by 2009
- Experimental proof that BG(radioact)=0 reachable
- SuperNEMO is well positioned to reach 40 50 meV on a very competitive time scale