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Outline
• (Anti)Neutrinos at a glance 

• Anti-Neutrinos from reactors and their detection 

• NPT, IAEA and anti-neutrinos 

• Neutron detection and search for “dark matter” 

• International collaborations and role of China 
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Neutrinos 
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• Second most abundant (known) 
particle in Universe (after photon) 

•  Recently discovered to have tiny 
but non-zero mass 

•  May hold key to “New Physics”, 
★ why we leave in world dominated by 

matter (almost no anti-matter) 
•  Extremely hard to detect 

(electrically neutral — only weak 
interactions)  

Neutrino flux at Earth (mostly from the sun): 
   6.5 x 1010 particles/cm2/sec
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First observation in 1956 in a nuclear reactor  
F. Reines (Nobel prize 1995): 
“… the most tiny quantity of reality ever imagined 
by a human being”

Neutrino Detection 

Still main reaction used to detect reactor (anti)-neutrinos 

• Interact only via weak 
interactions 

• Mean free path at 1 MeV is ~ 
106 km ! 

• Need very intense flux and 
very large detectors 

• Reactor produces 
antineutrino flux ~ 1017m-2s-1 

  

This reaction was used in 1956 observation νe + p→ e+ + n
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Neutrino Oscillations and role of reactors. 

• Observation of neutrino oscillations 

(1998-2002) and subsequent measurements of 

oscillation parameters — one of the biggest 

discoveries in particle physics 

• Complementary to Higgs boson and other 

physics pursued at LHC 

• Latest “big thing” (2012) — discovery of “θ13 

mixing angle” —- came from reactor neutrinos 

• Perhaps our best hope for “New Physics” 

• One of the hottest topics in particle physics — 

lots of development and investment, truly 

international effort 

oscillations ⇒ non-zero neutrino mass
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Antineutrino from nuclear reactor 

• ~6 anti-ν’s per fission 

• 1 GW reactor produces ~1.5 x 1020 anti-ν’s/sec 

• Detection possible despite small cross section 

• Impossible to shield!  
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Antineutrino Detectors 

• A lot of detector development, liquid 
and plastic scintillators, water 
Cerenkov dopants to increase neutron 
cross-section (Gd, Cd etc), 
photodetectors 

• Understanding of backgrounds, 
improved modelling  

• Cost reduction for Mton detectors — 
remote reactor monitoring (focus on 
water Cerenkov detectors) 

1,000-10,000 events per day, 1-10% precision  
of number of anti-ν’s —> # fissions —> fuel consumption 
!
Energy spectra of anti-ν’s are different for U and Pu

νe + p→ e+ + n
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Truly international effort with China playing a key role  
First θ13 measurement in Day Bay 
reactor in China

Other reactor neutrino experiments: 
Double Chooz in France,  
RENO in Korea, KamLAND in Japan

Future plans: "
JUNO, 20kT scintillator detector 
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Development of very large cost effective detectors 
based on success of SuperKamiokande (Japan)
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Can antineutrinos help with nuclear arms control? 
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The IAEA “Safeguards” Regime monitors the flow of fissile 
material through the nuclear fuel cycle in 170 countries 

Goal of antineutrino measurements — track fissile 
inventories in operating nuclear reactors 
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IAEA monitors ~220 reactors worldwide but never directly 
measures in-core fissile content

1. Check input/output declarations 
2. Item accountancy 
3. Containment and Surveillance 

1. “Gross defect” detection 
2. Item accountancy 
3. Containment and Surveillance 

1. Check declarations 
2. Item accountancy

Concerns:

• Operators report Fuel Burnup and Power History  
• No direct Pu Inventory (unless and until fuel is reprocessed)  
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Antineutrino from nuclear reactor 

• As reactor fuel burns, the composition changes —> Burnup  
• Antineutrino flux and energy spectrum change with time and composition

• Any sudden change in core composition causes change in 
antineutrino rate/spectrum —> can be detected 
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IAEA particular interest — Pu disposition 

• A long-sought goal of managing Pu that has been declared  
surplus to military needs.  

• Purpose: convert it to a form that is much harder to recover 
for use in a weapon 

• Currently preferred method: manufacture MOX fuel (Pu/U) 
and irradiate it in a reactor — “Spent Fuel Standard”, SFS"

!
!

• Burnup is strongly correlated with 
• Total neutron irradiation history 
• Fission product concentrations 
• Transmutation of heavy elements 
• Total antineutrino flux 

• Verifying SFS requires knowledge of fuel burnup 
for each assembly  

• Burnup measures energy extracted from fuel (or 
number of fissions that have occurred)
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Burnup monitoring

• “Conventional” burnup monitoring — thermo-hydraulic power monitor 

• measure temperature difference and flow rate to infer power 
• relatively intrusive (connection to sensitive plant systems) 
• vulnerable to spoofing  

• Alternative: measure integral antineutrino rate as a measure of fuel exposure  

Advantages:
• Non-intrusive, no connection to plant 

systems  
• Statistical precision 
• Self-calibrating 
• Highly tamper resistant, difficult to spoof 
• “Continuity of knowledge”

Currently two-type of reactors under evaluation
• Westinghouse PWR with partial MOX loading 

(common in US) 
• Fast breeder BN-600 with partial and full MOX 

loading (Russian) 
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Reactor monitoring with antineutrinos — an emerging field 

Slide by T. Lasserre, Applied Antineutrino Physics Conference, October 2012

Results from a pioneer SONGS experiment were reviewed at IAEA Novel Technologies 
meeting in Oct’08 and found to demonstrate the potential for the approach. 
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Example: NUCIFER Experiment 

• Deployment at a research reactor 
— Saclay Osiris (France) 

• Detector at 7m from 70MW core  
• ~700 anti-ν events/day expected 
• Funded, built, taking data
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NUCIFER Sensitivity to illicit Pu Retrievals"
from nuclear reactor core 
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More examples
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Other developments: Coherent Neutrino Scattering

• Neutrino elastic scattering from a nucleus as a whole  
• Relevant for ν’s of ~ MeV range (good match for reactor 

anti-ν’s) 
• A “Standard Model”process that yet to be observed 
• Main challenge: tiny energies from nuclear recall —>  

—> very low thresholds (~1 keV) 
• International R&D effort and competition to observe CS 

for the first time 
• Important reward: cross section (probability of 

interaction) is ~10 higher than “conventional” ν-
interaction — much smaller detectors can be used 

ionisation caused by nuclear 
recoil is measured 

Detector R&D, synergies with dark matter detection  
focus on ultra-low thresholds

• Broad Energy Germanium detectors (BEGe) 
• Low temperature bolometers  
• Liquid and gaseous noble gas detectors 

(e.g. LAr, HPAr, LXe, HPXe)
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Neutron detection of SNM and it issues

• Non-sensitive to isotope composition 
but provides clear signature of WGPu 
and HEU(90%) 

• Relatively straightforward for WGPu 
but not for HEU 
• ~60,000 n/sec per kg WGPu 
• ~1 n/sec per kg HEU 

• Neutron time signatures “multiplicity” 
• Shortage of He3, other techniques 

needed 
• Gamma background must be tackled 

Can fundamental research help?

Instruments for direct detection of dark matter — most 
sensitive neutron detectors 
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Dark Matter — we know it is there.  
We don’t know what is made of. 

observed

predicted

Dark Matter direct detection: 

Leading candidate: Weakly Interacting Massive Particle — WIMP
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Direct Dark Matter Detection 

• WIMP interactions with matter are identical to neutron’s 
• At issue: remove gamma background  

• State-of-the-art dark matter instruments — most sensitive neutron detectors 
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Dark Matter LXe detector 

• A highly competitive (and collaborative!) field 
• Many different technologies 

• LAr and LXe 
• Gaseous detectors 
• Semi-conductors 
• Bolometers 
• Scintillators and scintillating bolometers

Unexplored opportunity for SNM detection 
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PandaX — A direct dark matter detection "
experiment in China

Two-phase LXe position sensitive detector 
1 ton of LXe CJPL Underground Laboratory  

Sichuan province
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Concluding Remarks
• Antineutrino detectors have unique abilities to non-intrusively monitor reactor 

operational status, power and fissile content in real-time; 
• Several detectors, built specifically for safeguard applications, have demonstrated 

robustness of this technique at operating power reactors. Several more are 
planned; 

• Implementation in safeguards regime can be aided by further input from IAEA on 
the needs at specific reactors;  

• Promising technological breakthroughs are possible leading to more compact 
detectors and/or ability to detect less powerful reactors at a greater distance; 

• Novel technologies developed for direct dark matter detection can increase 
sensitivity and reliability of SNM detection; 

• Increased international cooperation in particle physics in the last ~25 years have 
led to profound fundamental discoveries and enhanced detector capabilities 
which can be used in arms control; 

• China has played an increasingly important role in both fundamental research 
(neutrino physics, dark matter) and instrumentation development; 

• Closer cooperation between Fundamental Research and Arms Control 
communities is important in addressing verification challenges; 
!

!
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BACKUP
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Daya Bay nuclear power 
complex (Guangdong, 
China)  
!
At 2.9 GW per reactor, 
the complex produces 
~3x1021 anti-ν’s per sec
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