Conversion of Scintillation Light to Electrical Signal

Most Common Device:
Photomultiplier Tube
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(from Photomultiplier Tubes, Philips Photonics)
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Photocathodes

Band structure in “standard” photocathode
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Band structure in “negative electron affinity” photocathode
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(from Photomultiplier Handbook, Burle Industries)
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Summary of Photocathode Materials

(from Derenzo)

Cathode type Composition
S1 AgOCs
S10 BIAgOCs
S11 CS3ShO
S20 (multi-alkali) Na,KSbCs
Bialkali K,CsSb
Bialkali (high temp)  Na,KSb

KCsRbShb
Bialkali RbCsSb
Solar blind* CeTe
Solar blind** Csl

S1, S10, S11, S20: vendor designations

* Q.E. <0.1% above 320 nm
** Q.E. <0.1% above 210 nm

Maximum quantum efficiency in above table is 27%.

Is this reasonable?

Peak Q.E.
0.4%
7%

21%
22%

27%
21%
24%
25%
18%
15%

Peak |
800 nm
420 nm

390 nm
380 nm

380 nm
360nm
440 nm
450 nm
200 nm
135 nm

no electric field within photocathode to direct electrons to

emitting surface

photoelectrons initially emitted isotropically

P ‘. directed toward faceplate

P  Y%directed toward dynode structure

transmission losses (bialkali photocathodes 40%

transmissive
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Fig. 26 - Photomuiltiplier design with curved faceplate and in-line dynode structure to
provide a minimum transit time and transit-time spread.
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Fig. 27 - Cross section of a photomultiplier showing equipotential lines and electron
trajectories that were plotted by computer.

(from Photomultiplier Handbook, Burle Industries)
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Secondary Emission in Dynodes
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Process similar to photocathodes, but here the incident quantum is

an electron.
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Desirable to obtain high secondary emission yields to reduce
fluctuations (spectral broadening).

Typical dynode materials: BeO(Cs), Cs;Sh, MgO

Negative electron affinity materials can also be used in dynodes,
e.g. GaP(Cs) — higher emission yield, but more difficult to fabricate.

Spectra at output of PMT for 1, 2, 3 primary photoelectrons using
conventional (d = 5) and high gain (d = 25) dynodes.

1 2 3 4 5
No. of secondaries in photoelectron equivalents

(from Knoll)
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High emission dynodes allow resolution of single photoelectrons.

Output spectrum of a phototube using a high gain secondary electron
emitter in the first dynode.
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(from Knoll)

If the secondary electron yield in the first dynode is sufficiently high,
the statistical fluctuations in the first gain stage will dominate.
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Many different dynode configurations have been developed to reduce
size, or improve gain, uniformity over large photocathode diameters,

transit time and transit time spread.
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Fig. 23 - The box-and-grid multiplier structure.

ELECTRON MULTIPLIER
Lo

r

SEMITRANSPARENT

/— FACEPLATE

PHOTOCATHODE 1

. N\
|

|

|

I

1

i

|

|

f

VIR PIY

D

IS

INCIDENT it
RADIATION Tl

SOOI
ASSNNNNN
S s

IRSSSSSWN
o224

NS NSNNN

Q

INTERNAL
CONDUCTIVE
COATING

92CS-32310

Fig. 24 - The venetian-blind multiplier structure.

(from Photomultiplier Handbook, Burle Industries)
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Continuous multiplier structures

Channel electron multiplier

Electron or ion in Many electrons out

Electric field gradient ——

(from Derenzo)

Can be combined in “microchannel plates”

—HV (typically 1-2 kV)
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(from Derenzo)

Introduction to Radiation Detectors and Electronics, 28-Jan-99 Helmuth Spieler
IV. Sintillation Detectors - 2 LBNL



10
Microchannel plates can be utilized in photomultipliers for ultra-fast
timing with low time-dispersion.

photocathode window
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(from Photomultiplier Tubes, Philips Photonics)
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Signal Evolution

1. energy is absorbed in scintillator
2. population of states that emit photons
number of radiative states

No= Eans/€
Eas energy absorbed in scintillator
g energy required to produce 1 photon
3. population of radiative states decays
P rate of photon emission

dNp,
dt

No
Npn(t) = T © t
Total number of photons emitted after time T
J
Npn(T) = g)nph(t)dt =No@- eT/t)

4. photons absorbed in photocathode,
producing photoelectrons

Npe (1) = QE g (1) = QEXNge

5. photoelectrons transported through gain structure
(dynodes in PMT) multiplied by G

b electric current at anode

Ianode(t) =G >QE ’Noé e
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How much of this signal is actually obtained?
1. Scintillator is coupled to PMT at one surface
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(from Photomultiplier Handbook, Burle Industries)
Scintillation light is emitted isotropically.
Depending on the geometry, at least half of emitted photons
must be reflected one or more times to reach the faceplate of
the photodetector.
Light losses due to

a) absorption in crystal

b) reflection losses
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Invariably, scintillation crystals are optically denser than air.

examples: Nal(Tl) n=1.85
CsI(Tl) n=1.795
CdwO, n=22-23
BGO n=2.152

NE102 n=1.581 (plastic)
NE213 n=1.508 (org. liquid)

air n=1
p Requirement for total reflection

. 1
sna 3 —
Nyl

Light incident within an angle a from normal incidence
will leave the crystal.

example Ny=15 P a=42°
External reflective layers can improve this situation
(see following discussion of light-guides).
2. Upon reaching the faceplate, light can be either transmitted

or reflected

refractive index of faceplate
(borosilicate glass or fused silica) nNgpp » 1.5

Important to avoid air-gap
(use optical grease to provide index match)
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3. photons must be transmitted through the faceplate
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(from Photomultiplier Tubes, Philips Photonics)

4. Photons must be absorbed in the photocathode
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(from Photomultiplier Tubes, Philips Photonics )

Introduction to Radiation Detectors and Electronics, 28-Jan-99 Helmuth Spieler
LBNL

IV. Scintillation Detectors - 2



15

5. Photoelectrons must traverse the photocathode and reach

the first dynode to be multiplied.

It is important that the emission spectrum of the scintillator, the
transmission through the faceplate and the absorption in the

photocathode are matched.

10
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(from Knoll)

Note that for short wavelength scintillators (for example the
fast component of BaF, at 220 nm) conventional borosilicate
faceplates are very inefficient — use fused silica for extended

UV response.
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Typical Nal(Tl) system (from Derenzo)

511 keV gamma ray

R

25000 photons in scintillator

R

15000 photons at photocathode

R

3000 photoelectrons at first dynode

R

3°10° electrons at anode

2 mA peak current

Resolution of energy measurement determined by statistical variance
of produced signal quanta.

DE DN _+/N_ 1
E N N <N

Resolution determined by smallest number of quanta in chain, i.e.
number of photoelectrons arriving at first dynode.

In this example

DE_ 1
E /3000

Typically 7 — 8% obtained, due to non-uniformity of light collection
and gain.

= 2%r.ms = 5% FWHM
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