PHAS0072
 Particle Physics
 Exam 2020-RESIT

[Prof. R. Saakyan]

Answer ALL THREE questions.

The numbers in square brackets show the provisional allocation of maximum marks per question or part of question.

The following data may be used if required:
The convention: $\hbar=c=1$ will be used throughout this paper unless specified otherwise.

Meaning	Value
Masses of u, d, s, c, b, t quarks	$2.2 \mathrm{MeV}, 4.7 \mathrm{MeV}, 96 \mathrm{MeV}, 1.3 \mathrm{GeV}, 4.2 \mathrm{GeV}, 173 \mathrm{GeV}$
Masses of e, μ, τ leptons	$0.5 \mathrm{MeV}, 106 \mathrm{MeV}, 1.8 \mathrm{GeV}$
Mass of all neutrinos	~ 0
Mass of the $\pi^{ \pm}$	140 MeV
Mass of Z boson $\left(M_{\mathrm{z}}\right)$	91 GeV
Mass of W boson $\left(M_{\mathrm{w}}\right)$	80 GeV
Reduced Planck constant, \hbar	$1.06 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Speed of light	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Elementary Electric Charge	$1.6 \times 10^{-19} \mathrm{C}$
Lifetime of $\mu^{ \pm}, \tau^{ \pm}, \pi^{ \pm}$	$2.2 \times 10^{-6} \mathrm{~s}, 2.9 \times 10^{-13} \mathrm{~s}, 2.6 \times 10^{-8} \mathrm{~S}$

CKM Matrix

$$
\left(\begin{array}{ccc}
\left|V_{u d}\right| & \left|V_{u s}\right| & \left|V_{u b}\right| \\
\left|V_{c d}\right| & \left|V_{c s}\right| & \left|V_{c b}\right| \\
\left|V_{t d}\right| & \left|V_{t s}\right| & \left|V_{t b}\right|
\end{array}\right)=\left(\begin{array}{ccc}
0.974 & 0.227 & 0.004 \\
0.227 & 0.973 & 0.042 \\
0.008 & 0.042 & 0.999
\end{array}\right)
$$

where $V_{i j}$ is the factor for interactions involving quarks i and j.

Dirac Matrices

The Dirac γ matrices satisfying $\gamma^{\mu} \gamma^{\nu}+\gamma^{v} \gamma^{\mu}=2 g^{\mu v}$ (for $\mu, \nu=0,1,2,3$) can be written as:

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \quad \gamma^{i=1,2,3}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) \quad \gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)
$$

The Pauli spin matrices, σ_{i}, are:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which satisfy: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{c})=\vec{a} \cdot \vec{c}+i \vec{\sigma} \cdot(\vec{a} \times \vec{c})$ for 3 component vectors \vec{a}, \vec{c}.

1. (a) The Dirac Lagrangian for a free spin-half particle is given by:

$$
\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi
$$

Show that this Lagrangian is not invariant under a phase transformation: $\psi(x) \rightarrow \psi^{\prime}(x)=e^{i q_{x}(x)} \psi(x)$ only if χ is a function of a coordinate $x \equiv x^{\mu}$, and not a constant.
(b) The required gauge invariance can be restored by replacing the derivative ∂_{μ} with the covariant derivative D_{μ}, $\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i q A_{\mu}$, where A_{μ} is a new field. What transformation properties must A_{μ} have to make this work? What is the physical interpretation of A_{μ} ?
(c) A Lagrangian describing a massive scalar Higgs field h and a hypothetical massive gauge boson B associated with a $U(1)$ local gauge symmetry can be written as follows,

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left(\partial_{\mu} h\right)\left(\partial^{\mu} h\right)-\lambda v^{2} h^{2}-\frac{1}{4} F_{\mu v} F^{\mu v}+\frac{1}{2} g^{2} v^{2} B_{\mu} B^{\mu} \\
& +g^{2} v B_{\mu} B^{\mu} h+\frac{1}{2} g^{2} B_{\mu} B^{\mu} h^{2}-\lambda v h^{3}-\frac{1}{4} \lambda h^{4}
\end{aligned}
$$

Identify the terms of the Lagrangian responsible for the massive h scalar, massive gauge boson $B, h-B$ interactions, and h self-interactions.

QUESTION 1 CONTINUES ON THE NEXT PAGE

PHAS0072/2020-RESIT

CONTINUED FROM PREVIOUS PAGE

(d) Draw a lowest-order Feynman diagram showing the production of a Higgs boson at the LHC and its decay to two photons.
[3]
(e) For the decay $h \rightarrow \gamma \gamma$ with photon energies E_{1} and E_{2} and the opening angle between them θ, show that the invariant mass, m_{h}, of the Higgs boson is given by:

$$
m_{h}^{2}=4 E_{1} E_{2} \sin ^{2}\left(\frac{\theta}{2}\right)
$$

(f) What would be the experimental signature of the Higgs di-photon decay in detectors such as ATLAS or CMS at the LHC?
2. (a) Draw the lowest order Feynman diagrams for the charged current (CC) and neutral current (NC) $v_{e} e^{-} \rightarrow v_{e} e^{-}$ scattering.
(b) The non-zero matrix elements for the $v_{e} \mathrm{e}^{-} \rightarrow v_{e} \mathrm{e}^{-}$process expressed in terms of left and right electron chiral couplings, c_{L} and c_{R}, are:

$$
M_{L L}^{C C}=\frac{g_{W}^{2} s}{m_{W}^{2}} \quad M_{L L}^{N C}=c_{L} \frac{g_{Z}^{2} s}{m_{Z}^{2}} \quad M_{L R}^{N C}=c_{R} \frac{g_{Z}^{2} s}{m_{Z}^{2}} \frac{1}{2}\left(1+\cos \theta^{*}\right)
$$

where θ^{*} is the angle between the incoming and scattered neutrino in the centre-of-mass frame, and s is the Mandelstam variable. Show that the spin-averaged matrix element for the mixed NC and CC interaction can be written as:

$$
\begin{equation*}
\left.\left.\langle | M\right|_{N C+C C} ^{2}\right\rangle=\frac{1}{2} \frac{g_{W}^{4} s^{2}}{m_{W}^{4}}\left[\left(1+c_{L}\right)^{2}+\frac{1}{4} c_{R}^{2}\left(1+\cos \theta^{*}\right)^{2}\right] \tag{5}
\end{equation*}
$$

You can use the relation $g_{z} / m_{z}=g_{W} / m_{W}$.
(c) Draw the lowest order Feynman diagram for the decay $\pi^{0} \rightarrow v_{e} \bar{v}_{e}$ and explain why this process is effectively forbidden.

QUESTION 2 CONTINUES ON THE NEXT PAGE

CONTINUED FROM PREVIOUS PAGE

(d) The long-baseline neutrino beams are normally produced from the pion decay in flight, $\pi^{+} \rightarrow \mu^{+} v_{\mu}$. Find the neutrino energy (in MeV) in the pion rest frame.
(e) Explain briefly how CP-violation in the neutrino sector can be searched for using long-baseline neutrino beams.
(f) What experimental observation could be used to show that the neutrino is its own anti-particle? Explain why this observation would not occur for Dirac and/or massless neutrino.
3. (a) Draw the lowest order Feynman diagrams for the decays

$$
B^{+} \rightarrow \pi^{0} e^{+} v_{e} \quad B^{+} \rightarrow \bar{D}^{0} e^{+} v_{e}
$$

(The quark content of the B^{+}meson is $u \bar{b}$, that of the \bar{D}^{0} meson is $u \bar{c}$.)
[3]
(b) For the above diagrams, write down the factors at each interaction vertex in terms of the coupling constant, Dirac gamma matrices and elements of the CKM matrix.
[3]
(c) The right-handed anti-particle chiral state v_{R} is defined by the projection operator $P_{L} v=v_{R}$, where $P_{L}=\frac{1}{2}\left(1-\gamma^{5}\right)$. Show explicitly that

$$
\bar{v} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v=\bar{v}_{R} \gamma^{\mu} v_{R}
$$

and interpret the significance of this result for the quark vertices in the B-meson decay diagrams above.

QUESTION 3 CONTINUES ON THE NEXT PAGE

CONTINUED FROM PREVIOUS PAGE

(d) Consider ep collisions occurring along the z-axis. Let the energy of the final state jet be E_{j}, and the z-component of its momentum be p_{j}^{z}. Show that the y variable defined by $y \equiv\left(P_{p} \cdot q\right) /\left(P_{p} \cdot P_{e}\right)$, can be written as:

$$
y=\frac{E_{j}-p_{j}^{z}}{2 E_{e}}
$$

where P_{p} and P_{e} are the four-momenta of the colliding proton and electron respectively, q is the four-momentum transferred in the interaction and E_{e} is the total energy of the colliding electron. You can assume that electron and proton masses can be neglected.
(e) What is the expected value of

$$
\int_{0}^{1}[u(x)-\bar{u}(x)] d x
$$

for the proton, where $u(x)$ and $\bar{u}(x)$ are the u-quark and \bar{u}-quark parton distribution functions respectively?

