PHAS0072 Particle Physics Exam 2020-RESIT

[Prof. R. Saakyan]

Answer ALL THREE questions.

The numbers in square brackets show the provisional allocation of maximum marks per question or part of question.

The following data may be used if required:

The convention: $\hbar = c = 1$ will be used throughout this paper unless specified otherwise.

Meaning	Value
Masses of <i>u</i> , <i>d</i> , <i>s</i> , <i>c</i> , <i>b</i> , <i>t</i> quarks	2.2 MeV, 4.7 MeV, 96 MeV, 1.3 GeV, 4.2 GeV, 173 GeV
Masses of e, μ, τ leptons	0.5 MeV, 106 MeV, 1.8 GeV
Mass of all neutrinos	~0
Mass of the π^{\pm}	140 MeV
Mass of Z boson (M_Z)	91 GeV
Mass of W boson (M_W)	80 GeV
Reduced Planck constant, ħ	$1.06 imes 10^{-34} ext{ J} \cdot ext{s}$
Speed of light	3×10^8 m/s
Elementary Electric Charge	1.6×10 ⁻¹⁹ C
Lifetime of μ^{\pm} , τ^{\pm} , π^{\pm}	$2.2 imes10^{-6}$ s , $2.9 imes10^{-13}$ s, $2.6 imes10^{-8}$ s

CKM Matrix

V _{ud}	$ V_{us} $	$ V_{ub} $		0.974	0.227	0.004	١
$ V_{cd} $	$ V_{cs} $	$ V_{cb} $	=	0.227	0.973	0.042	
Vtd	$ V_{ts} $	$ V_{tb} $		800.0	0.042	0.999	

where V_{ij} is the factor for interactions involving quarks *i* and *j*.

PHAS0072/2020-RESIT

Dirac Matrices

The Dirac γ matrices satisfying $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$ (for $\mu, \nu = 0, 1, 2, 3$) can be written as:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad \gamma^{i=1,2,3} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

The Pauli spin matrices, σ_i , are:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which satisfy: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{c}) = \vec{a} \cdot \vec{c} + i\vec{\sigma} \cdot (\vec{a} \times \vec{c})$ for 3 component vectors \vec{a} , \vec{c} .

PHAS0072/2020-RESIT

[Part marks]

1. (a) The Dirac Lagrangian for a free spin-half particle is given by:

$$\mathcal{L} = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi$$

Show that this Lagrangian is *not* invariant under a phase transformation: $\psi(x) \rightarrow \psi'(x) = e^{iq\chi(x)}\psi(x)$ only if χ is a function of a coordinate $x \equiv x^{\mu}$, and *not* a constant. [3]

- (b) The required gauge invariance can be restored by replacing the derivative ∂_{μ} with the covariant derivative D_{μ} , $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$, where A_{μ} is a new field. What transformation properties must A_{μ} have to make this work? What is the physical interpretation of A_{μ} ? [3]
- (c) A Lagrangian describing a massive scalar Higgs field *h* and a *hypothetical* massive gauge boson *B* associated with a U(1) local gauge symmetry can be written as follows,

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h) - \lambda v^{2} h^{2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} g^{2} v^{2} B_{\mu} B^{\mu} \\ &+ g^{2} v B_{\mu} B^{\mu} h + \frac{1}{2} g^{2} B_{\mu} B^{\mu} h^{2} - \lambda v h^{3} - \frac{1}{4} \lambda h^{4} \end{aligned}$$

Identify the terms of the Lagrangian responsible for the massive *h* scalar, massive gauge boson *B*, h - B interactions, and *h* self-interactions.

[4]

QUESTION 1 CONTINUES ON THE NEXT PAGE

PHAS0072/2020-RESIT

CONTINUED FROM PREVIOUS PAGE

- (d) Draw a lowest-order Feynman diagram showing the production of a Higgs boson at the LHC and its decay to two photons.
- (e) For the decay $h \rightarrow \gamma \gamma$ with photon energies E_1 and E_2 and the opening angle between them θ , show that the invariant mass, m_h , of the Higgs boson is given by:

$$m_h^2 = 4E_1E_2\sin^2\left(\frac{\theta}{2}\right).$$

[4]

[3]

[3]

(f) What would be the experimental signature of the Higgs di-photon decay in detectors such as ATLAS or CMS at the LHC?

PHAS0072/2020-RESIT

[2]

[5]

[3]

- 2. (a) Draw the lowest order Feynman diagrams for the charged current (CC) and neutral current (NC) $\nu_e e^- \rightarrow \nu_e e^-$ scattering.
 - (b) The non-zero matrix elements for the $v_e e^- \rightarrow v_e e^-$ process expressed in terms of left and right electron chiral couplings, c_L and c_R , are:

$$M_{LL}^{CC} = \frac{g_W^2 s}{m_W^2} \quad M_{LL}^{NC} = c_L \frac{g_Z^2 s}{m_Z^2} \quad M_{LR}^{NC} = c_R \frac{g_Z^2 s}{m_Z^2} \frac{1}{2} \left(1 + \cos \theta^*\right)$$

where θ^* is the angle between the incoming and scattered neutrino in the centre-of-mass frame, and *s* is the Mandelstam variable. Show that the spin-averaged matrix element for the mixed NC and CC interaction can be written as:

$$\langle |\mathbf{M}|_{NC+CC}^2 \rangle = \frac{1}{2} \frac{g_W^4 s^2}{m_W^4} \left[(1+c_L)^2 + \frac{1}{4} c_R^2 (1+\cos\theta^*)^2 \right]$$

You can use the relation $g_Z/m_Z = g_W/m_W$.

(c) Draw the lowest order Feynman diagram for the decay $\pi^0 \rightarrow \nu_e \bar{\nu}_e$ and explain why this process is effectively forbidden.

QUESTION 2 CONTINUES ON THE NEXT PAGE

PHAS0072/2020-RESIT

[Part marks]

CONTINUED FROM PREVIOUS PAGE

(d)	The long-baseline neutrino beams are normally produced	
	from the pion decay in flight, $\pi^+ \to \mu^+ \nu_{\mu}$. Find the neutrino energy (in MeV) in the pion rest frame.	[4]
(e)	Explain briefly how CP-violation in the neutrino sector can be searched for using long-baseline neutrino beams.	[3]
(f)	What experimental observation could be used to show that the neutrino is its own anti-particle? Explain why this observation would not occur for Dirac and/or massless	
	neutrino.	[3]

PHAS0072/2020-RESIT

[3]

3. (a) Draw the lowest order Feynman diagrams for the decays

$$B^+
ightarrow \pi^0 e^+
u_e \qquad B^+
ightarrow ar{D}^0 e^+
u_e$$

(The quark content of the B^+ meson is $u\bar{b}$, that of the \bar{D}^0 meson is $u\bar{c}$.)

- (b) For the above diagrams, write down the factors at each interaction vertex in terms of the coupling constant, Dirac gamma matrices and elements of the CKM matrix. [3]
- (c) The right-handed <u>anti-</u>particle chiral state v_R is defined by the projection operator $P_L v = v_R$, where $P_L = \frac{1}{2} (1 \gamma^5)$. Show explicitly that

$$\bar{v}\gamma^{\mu}\frac{1}{2}\left(1-\gamma^{5}\right)v=\bar{v}_{R}\gamma^{\mu}v_{R}$$

and interpret the significance of this result for the quark vertices in the *B*-meson decay diagrams above.

[5]

QUESTION 3 CONTINUES ON THE NEXT PAGE

PHAS0072/2020-RESIT

CONTINUED FROM PREVIOUS PAGE

(d) Consider *ep* collisions occurring along the *z*-axis. Let the energy of the final state jet be E_j , and the *z*-component of its momentum be p_j^z . Show that the *y* variable defined by $y \equiv (P_p \cdot q)/(P_p \cdot P_e)$, can be written as:

$$y=\frac{E_j-p_j^z}{2E_e},$$

where P_p and P_e are the four-momenta of the colliding proton and electron respectively, q is the four-momentum transferred in the interaction and E_e is the total energy of the colliding electron. You can assume that electron and proton masses can be neglected.

(e) What is the expected value of

$$\int_0^1 \left[u(x) - \bar{u}(x) \right] dx$$

for the proton, where u(x) and $\bar{u}(x)$ are the *u*-quark and \bar{u} -quark parton distribution functions respectively?

[4]

[5]

PHAS0072/2020-RESIT

END OF EXAMINATION PAPER