
[Part marks]PHASM442/2015 Model Answers
1. The four-momenta of the relativistic electron and stationary proton in the lab frane

shown in the Figure below can be written as,

p1 = (E1, 0, 0, E1), p2 = (M, 0, 0, 0), p3 = (E3, E3 sin θ, 0, E3 cos θ) p4 = (E4, ~p4)

z

e-

e-

θ

p
p

P1

P3

P4

(a) [Unseen].
From 4-momentum conservation, p1 − p3 = p4 − p2. Squaring the left-hand
side and writing them explicitly,

(p1 − p3)
2 = p2

1 + p2
3 − 2p1 · p3 ≈ −2p1 · p3 = −2E1E3(1− cos θ)

where we have taken into account that the electron is relativistic, i.e. E ≈ |~p|.
Similarly for the right-hand side

(p2 − p4)
2 = p2

2 + p2
4 − 2p2 · p4 = 2M2 − 2p2 · p4 = 2M2 − 2ME4

= 2M2 − 2M(E1 +M − E3) = −2M(E1 − E3)

Therefore E1E3(1− cos θ) = M(E1 − E3). Hence,

E3 =
E1M

M + E1 − E1 cos θ

[5]

(b) [Unseen].
Using 4-momentum kinematic relations,

Q2 = −q2 = −(p1 − p3)
2 = 2E1E3(1− cos θ)

And using the previous result for E3,

Q2 = 2E1(1− cos θ)
E1M

M + E1 − E1 cos θ

Or numerically,

Q2 = 2 · 530(1− cos 75◦)
530 · 938

938 + 530− 530 cos 75◦
= 293156MeV 2

corresponding to the momentum transfer Q = 541 MeV.
[NOTE: Students can assume the proton mass to be in 930− 1000 MeV range.] [3]
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(c) [Covered in lectures. Part Unseen] .
Taking into account the isospin symmetry, i.e. dn(x) = up(x) and un(x) =
dp(x) we can write:

F ep
2 (x) = x

(
4

9
u(x) +

1

9
d(x) +

4

9
u(x) +

1

9
d(x)

)

F en
2 (x) = x

(
4

9
d(x) +

1

9
u(x) +

4

9
d(x) +

1

9
u(x)

)
Resolving into valence and sea quark contributions:

u(x) = uV (x) + uS(x) d(x) = dV (x) + dS(x) u(x) = uS(x) d(x) = dS(x)

and assuming uS(x) = dS(x) = uS(x) = dS(x) = S(x), we obtain:

F ep
2 (x) = x

(
4

9
uV (x) +

1

9
dV (x) +

10

9
S(x)

)

F en
2 (x) = x

(
4

9
dV (x) +

1

9
uV (x) +

10

9
S(x)

)
Giving the ratio:

F en
2 (x)

F ep
2 (x)

=
4dV (x) + uV (x) + 10S(x)

4uV (x) + dV (x) + 10S(x)

The sea component arises from processes such as g → uu. Due to the 1/q2

dependence of the gluon propagator it is much more likely to produce low
energy gluons. Hence, the sea quarks will comprise of low energy qq. Therefore
at low x the sea quarks will dominate giving

F en
2 (x)

F ep
2 (x)

→ 1 as x→ 0

At high x the sea contribution is small, so for x→ 1:

F en
2 (x)

F ep
2 (x)

=
4dV (x) + uV (x)

4uV (x) + dV (x)

Taking into account that uV = 2dV we obtain:

F en
2 (x)

F ep
2 (x)

→ 2/3 as x→ 0

[6]

(d) [Covered in lectures] .

The prediction at low x,
F en

2 (x)

F ep
2 (x)

→ 1, is observed experimentally. However

experimentally at high x the ratio is approximately 1/4 rather than predicted
2/3. It is sufficient if the answer mentions that experimentally it is < 2/3. [2]
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(e) [Covered in lectures] .
The Feynman diagram and the Feynman rules for vertices and the propagator
are shown below.

q q q
q q q

 

Therefore the matrix element is:

−iM = [ue(p3)ieγ
µue(p1)]

−igµν

q2
[uq(p4)ieγ

νuq(p2)]

[Note: −i in the matrix element formula can be omitted] [4]

[Part marks]
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2. (a) [Unseen].
(γ5)2 = 1. Using γµγν = −γνγµ for µ 6= ν we can write:

γ5 = iγ0γ1γ2γ3 = −iγ3γ0γ1γ2 = −iγ3γ2γ0γ1 = iγ3γ2γ1γ0

Using the identities, (γ0)2 = 1 and (γµ)2 = −1 for µ = 1, 2, 3 we obtain

(γ5)2 = i2γ3γ2γ1γ0γ0γ1γ2γ3 = 1

γ5† = γ5. Using the identities γ0† = γ0 and γµ† = −γµ for µ = 1, 2, 3 we
obtain

γ5† =
(
iγ0γ1γ2γ3

)†
= −iγ3†γ2†γ1†γ0† = iγ3γ2γ1γ0

From above we have iγ0γ1γ2γ3 = iγ3γ2γ1γ0 and therefore γ5† = γ5. [5]

(b) [Covered in lectures].
In terms of left- and right-handed chiral components the basic QED vertex
can be written as:

ieψγµψ = ie
(
ψL + ψR

)
γµ (ψR + ψL)

= ie
(
ψRγ

µψR + ψRγ
µψL + ψLγ

µψR + ψLγ
µψL

)
[2]

(c) Involves synthesising few ideas covered in lectures.

ψRγ
µψL = 1

2
ψ†(1 + γ5)γ0γµ 1

2
(1− γ5)ψ

= 1
4
ψ†γ0(1− γ5)γµ(1− γ5)ψ

= 1
4
ψγµ(1 + γ5)(1− γ5)ψ

= 1
4
ψ

(
1− (γ5)2

)
ψ

And since (γ5)2 = 1, ψRγ
µψL = 0. A very similar calculation leads to

ψLγ
µψR = 0. [5]

(d) Covered in lectures.
Chirality is conserved in EM interactions. In the ultra-relativistic limit chi-
rality = helicity, so only two helicity combinations at the vertices of the
e+e− → µ+µ− process provide a non-zero contribution to the matrix element,
and hence cross-section. [2]

(e) Unseen.
Using the C.o.M. notations as in Figure below:
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we can write
p1 = (E, 0, 0, E) p2 = (E, 0, 0,−E)

p3 = (E,E sin θ, 0, E cos θ) p4 = (E,−E sin θ, 0,−E cos θ)

This will give the following kinematic relationships:

p1 · p2 = 2E2 p1 · p3 = E2(1− cos θ) p1 · p4 = E2(1 + cos θ)

leading to:

〈|Mfi|2〉 = 2e4
(p1 · p3)

2 + (p1 · p4)
2

(p1 · p2)2

[4]

(f) Unseen.
Since s-channel QED cross-sections decrease as 1/s, as the centre-of-mass
energy increases, higher instantaneous luminosities L are required to obtain
an adequate event rate R = σL [2]

[Part marks]
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3. (a) [Unseen].
The unitarity of the PMNS matrix means UU † = I, or writing it explicitly: Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 U∗

e1 U∗
µ1 U∗

τ1

U∗
e2 U∗

µ2 U∗
τ2

U∗
e3 U∗

µ3 U∗
τ3

 =

 1 0 0
0 1 0
0 0 1


Therefore we can write:

Ue1U
∗
e1 + Ue2U

∗
e2 + Ue3U

∗
e3 = 1

Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0

[2]

(b) [Covered in lectures].

|ψ(t = 0)〉 = |νe〉 = Ue1|ν1〉+ Ue2|ν2〉+ Ue3|ν3〉

[1]

(c) [Covered in lectures].
The wave-function evolves according to the time-evolution of the mass eigen-
states:

|ψ(L)〉 = Ue1|ν1〉e−iφ1 + Ue2|ν2〉e−iφ2 + Ue3|ν3〉e−iφ3

where φi = pi · x = (Ei − |~pi|)L. [2]

(d) [Unseen].
Expressing the mass eigenstates in terms of the weak eigenstates:

|ψ(L)〉 = Ue1

(
U∗

e1|νe〉+ U∗
µ1|νµ〉+ U∗

τ1|ντ 〉
)
e−iφ1

+Ue2

(
U∗

e2|νe〉+ U∗
µ2|νµ〉+ U∗

τ2|ντ 〉
)
e−iφ2

Ue3

(
U∗

e3|νe〉+ U∗
µ3|νµ〉+ U∗

τ3|ντ 〉
)
e−iφ3

Which can be rearranged to give:

|ψ(L)〉 =
(
Ue1U

∗
e1e

−iφ1 + Ue2U
∗
e2e

−iφ2 + Ue3U
∗
e3e

−iφ3

)
|νe〉

+
(
Ue1U

∗
µ1e

−iφ1 + Ue2U
∗
µ2e

−iφ2 + Ue3U
∗
µ3e

−iφ3

)
|νµ〉

+
(
Ue1U

∗
τ1e

−iφ1 + Ue2U
∗
τ2e

−iφ2 + Ue3U
∗
τ3e

−iφ3

)
|ντ 〉

From which we obtain:

P (νe → νµ) = |〈νµ|ψ(L)〉|2

=
∣∣∣Ue1U

∗
µ1e

−iφ1 + Ue2U
∗
µ2e

−iφ2 + Ue3U
∗
µ3e

−iφ3

∣∣∣2
[4]
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(e) [Covered in lectures].
The two diagrams are shown in Figure below where l− ≡ µ− [2]

(f) [Unseen].
Consider ντn→ τ−p interaction. In the laboratory frame, where the neutron
is at rest, the centre-of-mass energy squared is given by:

s = (pν + pn)2 = (Eν +mn)2 − E2
ν = 2Eνmn +m2

n

The ντn → τ−p interaction is only kinematically allowed if s > (mτ +mp)
2.

Therefore:

Eν >
(m2

p −m2
n) +m2

τ + 2mpmτ

2mn

which numerically gives E > 3.42 GeV.
Consider ντe

− → νeτ
− interaction. These interactions are kinematically al-

lowed if s > m2
τ . In the laboratory frame:

s = (pν + pe)
2 = (Eν +me)

2 − E2
ν = 2Eνme +m2

e

Hence

Eν >
m2

τ −m2
e

2me

which numerically gives E > 3.2 TeV.
Consequently for detecting ντ via CC reactions only interactions on nucle-
ons are relevant (typical energies in these experiments are GeV). The energy
threshold for CC interactions of ντ with atomic electrons are impractically
high. [5]
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(g) [Covered in lectures].
The Feynman diagram of pion decay is shown below.

Despite a smaller phase space the decay to µ+νµ is much more likely than to
e+νe due to the spin structure of the weak interaction. Weak interaction only
couples to left-handed particle states. Since neutrinos are (almost) massless,
it must be in left-handed state. Therefore to conserve angular momentum
µ+ is emitted in the left-handed state. (Students might include a diagram
to demonstrate that). As µ+ is not relativistic (due to a relatively small
difference between the masses of pion and muon) it can have a significant
“wrong” helicity component, proportional to mµ/mπ. The decay to e+νe is
strongly suppressed for that reason. Energetically there are no other final
states π+ could decay to without violating lepton number. [4]

[Part marks]
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4. (a) [Unseen].
Consider the derivatives of the free-particle plane wave solution ψ(x, t) =
u(E,p)ei(p·x−Et):

∂0ψ =
∂ψ

∂t
= −iEψ; ∂1ψ =

∂ψ

∂x
= ipxψ; ...

Substituting these into the Dirac equation (iγµ∂µ −m)ψ = 0 gives:(
γ0E − γ1px − γ2py − γ3pz −m

)
u = 0

which can be written:
(γµpµ −m)u = 0

[3]

(b) [Involves synthesising few ideas covered in lectures].
Under the transformation ψ(x) → ψ′(x) = eiqχ(x)ψ(x) the Lagrangian be-
comes

L′ = iψ′γµ∂µψ
′ −mψ′ψ′

= ie−iqχψγµ
[
eiqχ(x)∂µψ + iq(∂µχ)eiqχ(x)ψ

]
ψ −me−iqχ(x)ψeiqχ(x)ψ

= L − qψγµ(∂µχ)ψ

If χ is constant the term (∂µχ) disappears and the Lagrangian is restored
(invariant). However if χ is a function of x the Lagrangian is not invariant
under the local phase transformation. [4]

(c) [Covered in lectures].
To restore the Lagrangian invariance we need to cancel the term qψγµ(∂µχ)ψ.
The cancellation is achieved by introducing a new field which transforms as

Aµ → A′
µ = Aµ − ∂µχ

Therefore the gauge-invariant Lagrangian for a spin-half fermion becomes:

L = ψ (iγµ∂µ −m)ψ − qψγµAµψ

The term qψγµAµψ describes the interaction of the fermion with the new field
Aµ, which can be identified as the photon. Therefore the requirement of gauge
invariance introduces the interaction between fermions in QED via exchange
of gauge bosons (photons). [4]

(d) [Involves synthesising few ideas covered in lectures].
The terms 1

2
(∂µh)(∂

µh)− λv2h2 describe a massive h scalar.
The terms 1

4
FµνF

µν + 1
2
g2v2BµB

µ describe a massive gauge boson.
The terms g2vBµB

µh + 1
2
g2BµB

µh2 describe interactions between the scalar
h and the gauge boson B. Finally the terms λvh3 − 1

4
λh4 describe self-

interactions of the scalar h. [4]
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(e) [Unseen].
Example diagrams are below. Other suitable diagrams will be accepted (e.g.
W-fusion for Higgs production). [2]

(f) [Covered in lectures].
H → bb suffers from a much higher QCD background (bb are produced copi-
ously in strong interactions).
Photons from H → γγ will produce a much cleaner (less background) signal
in the EM calorimeter, easier to identify EM showers than to tag b-jets.
The energy resolution of the EM calorimeter is better than that of the hadronic
calorimeter, the Higgs invariant mass can be reconstructed with a better res-
olution. [3]

[Part marks]
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5. (a) [Unseen].
The total decay rate is determined by the spin-averaged matrix element squared,
i.e.:

〈|Mfi|2〉 = 1
3

(
|M−|2 + |ML|2 + |M+|2

)
= 1

3
g2

Wm
2
W

[
1
4
(1 + cos θ)2 + 1

2
sin2 θ + 1

4
(1− cos θ)2

]
= 1

3
g2

Wm
2
W

Therefore the W− → e−νe decay rate is

Γ =
p∗

32π2m2
W

∫
〈|Mfi|2〉 dΩ∗

=
p∗

32π2m2
W

4π 1
3
g2

Wm
2
W =

g2
WmW

48π
[6]

(b) Unseen.
From the lepton universality and the small (compared to the W mass) differ-
ences between lepton masses we have:

Γ(W− → e−νe) = Γ(W− → µ−νµ) = Γ(W− → τ−ντ )

The W boson can also decay to all flavours of quarks with the exception of
the top quark, which is too massive (mt > mW ). The decay rate of the W
boson to a particular quark flavour needs to account for the elements of the
CKM matrix and the three possible colours of the final state quarks.

Γ(W− → du) = 3|Vud|2Γeν , Γ(W− → dc) = 3|Vcd|2Γeν

Γ(W− → su) = 3|Vus|2Γeν , Γ(W− → sc) = 3|Vcs|2Γeν

Γ(W− → bu) = 3|Vub|2Γeν , Γ(W− → bc) = 3|Vcb|2Γeν

From the unitarity of the CKM matrix:

|Vud|2 + |Vus|2 + |Vub|2 = 1 and |Vcd|2 + |Vcs|2 + |Vcb|2 = 1

Therefore the lowest order prediction for the W boson decay to quarks is:

Γ(W− → qu′) = 6Γ(W− → e−νe)

Thus the total decay rate of the W boson is

ΓW = 9ΓW→eν =
3g2

WmW

16π
≈ 2.07GeV

[6]
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(c) [Unseen].
Any allowed combination of quarks/leptons in the diagram (below) is ok. [2]

(d) [Unseen].
Because |Vtb| >> |Vts| > |Vtd|. [1]

(e) [Covered in lectures].
b-quarks will be tagged in the vertex (silicon) detector using displaced vertices
from b-quark decay. The jets are detected in the hadronic calorimeter.
Electrons will be detected in the EM calorimeter with a characteristic shape
and depth of the EM shower. The sign of the electrons (or positrons) can be
detected by the sign of the curvature in the magnetic field using the tracking
detector. Neutrino will be associated with missing energy.
The hadronic final states (pions) of the second W decay will be detected in
the hadronic calorimeter. [3]

(f) [Covered in lectures].
By reconstructing the invariant mass of the final state particles,W 2 = (

∑
E)2−

(
∑

p)2, and comparing them with the known mass of W boson and top quark
(taking into account detector resolution effects) one can statistically separate
W and t from background events that are not peaked at the invariant mass
values. [2]
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