
PHASM(G)442/2016 Model Answers[Part marks]

1. (a) [Unseen].
B+ decay

u u

b c  for D0,   u  for π 0

W +

e+

νe

[4]

(b) [Covered in lectures but unseen for this particular example].
For quark vertices:
−igW√

2
V ∗cbγ

µ 1
2

(1− γ5), or V ∗ub.
(1 mark for getting the complex conjugate, V ∗cb(V

∗
ub) right). [3]

For lepton vertex:
−igW√

2
γµ 1

2
(1− γ5) [1]

(Missing 1√
2
factors and the ”minus” sign will not lose marks.)

(c) [Unseen].
Using the definition PLv = 1

2
(1− γ5) v = vR we have

v̄γµ
1

2

(
1− γ5

)
v = v̄γµvR

Also, v̄ = v̄L + v̄R. Therefore we need to evaluate v̄Lγ
µvR and v̄Rγ

µvR. [2]

For v̄Lγ
µvR we have:

v̄Lγ
µvR = v†

1

2

(
1 + γ5

)
γ0γµ

1

2

(
1− γ5

)
v =

1

4
v†γ0

(
1− γ5

)
γµ
(
1− γ5

)
v =

=
1

4
v̄γµ

(
1 + γ5

) (
1− γ5

)
v =

1

4
v̄γµ

(
1−

(
γ5
)2)

v = 0

where we used (γ5)
2

= 1. [3]

Similar arguments lead to:

v̄Rγ
µvR =

1

4
v̄γµ

(
1− γ5

)2
v 6= 0

Therefore,

v̄γµ
1

2

(
1− γ5

)
v = v̄Rγ

µvR

as required. [1]

The significance of this result is that it shows that only right chiral anti-
particle states participate in the weak interaction. [1]
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(d) [Unseen].
Most convenient to use natural units. From the Fermi Golden Rule:

Γ = |Mfi|2 × PS

where Mfi is the matrix element of the process and PS is the phase space. [1]

The energy scale of a decay is low compared the mass of the exchanged boson,
MW . Therefore q2 � M2

W and Mfi ∝ g2/M2
W , where g is a dimensionless

coupling constant. Hence, |Mfi|2 ∝ g4M−4
W ∝ [E]−4 [3]

Γ has units of [E] and so PS must have units of [E]5. Since the relevant
energy scale is the mass of the B-meson, MB, we have Γ ∝M5

B. [1]

PHASM442/2016 CONTINUED
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[Part marks]

2. (a) [Covered in lectures].
The spin-averaged matrix element is obtained by averaging over the initial
spin states and summing over the final spin states:

〈|Mfi|2〉 =
1

4

(
|MRR|2 + |MRL|2 + |MLR|2 + |MLL|2

)
=

=
1

4
e4
(
2 (1 + cos θ)2 + 2 (1− cos θ)2

)
= e4

(
1 + cos2 θ

)
= (4πα)2

(
1 + cos2 θ

)
[3]

(b) [Unseen].
We will work in the centre-of-mass frame and use the notation from the dia-
gram below:

At
√
s = 30GeV we can neglect the electron and muon masses. Hence,

p1 = (E, 0, 0, E) p2 = (E, 0, 0,−E)

p3 = (E,E sin θ, 0, E cos θ) p4 = (E,−E sin θ, 0,−E cos θ)

giving,

p1 · p2 = 2E2; p1 · p3 = E2 (1− cos θ) ; p1 · p4 = E2 (1 + cos θ) ;

[2]

Therefore we can write:

〈|Mfi|2〉 = 2e4
(p1 · p3)2 + (p1 · p4)2

(p1 · p2)2

[2]

Using the definitions s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2, and

neglecting the fermion masses, i.e. p2i ≈ 0, we can write:

〈|Mfi|2〉 = 2e4
(
t2 + u2

s2

)
[1]
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(c) [Covered in lectures].
From the calculations in (a) the cross-section dependence on cos θ should look
as follows:

[2]

In reality the distribution is slightly asymmetric due to contribution of higher
order QED and Z exchange. [1]

(d) [Unseen].
The QED calculation of the e+e− annihilation to muons and quarks is the
same giving the total cross-section expression σ = 4πα2

3s
Q2, where Q is the

electric charge of the final state particles. The difference between the cross-
sections with muons and hadrons in the final state comes from quark electric
charges and three possible colour charges. Therefore:

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑
q

Q2
q

[2]

At the centre-of-mass energy
√
s = 30 GeV all quark pairs can be produced

apart from the top quark, i.e. uū, dd̄, ss̄, cc̄, bb̄. Hence,

R = 3×
(

4

9
+

1

9
+

1

9
+

4

9
+

1

9

)
=

11

3

[2]

(e) [Involves synthesising few ideas given in lectures].
The main components of a typical collider detector are pixel detector, tracker,
electromagnetic and hadronic calorimeters, muon chambers. Muons will leave
tracks in all of the detector subsystems and hadrons will not go beyond the
hadron calorimeter.
Hadrons will produce showers of secondary particles with characteristic lateral
and longitudinal profiles. Muons only lose energy by ionisation and are the
most penetrating charged particles. They will produce straight long tracks
and, unlike hadrons, will get to the outermost muon detectors. [3]

(f) [Briefly discussed in lectures].
Hadrons containing b-quarks live sufficiently long to travel a few mm before
decaying. The decay products of the b-quark can emerge at a relatively large
angle to the original b-quark direction creating a d isplaced secondary vertex.
Jets from b-quarks can be identified by resolving the secondary and primary
vertices using high precision silicon microvertex detectors. [2]
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[Part marks]

3. (a) [Unseen].
The hermitian conjugate of uA is:

u†A =
√
|E|+m

(
χ†A χ†A

(
~σ·~p
E+m

)† )
=
√
|E|+m

(
χ†A χ†A

(
~σ·~p
E+m

) )
since (~σ · ~p)† = (~σ · ~p) (Helicity is observable/hermitian). [1]

u†AuA = (E +m)
(
χ†A χ†A

(
~σ·~p
E+m

) )( χA(
~σ·~p
E+m

)
χA

)
=

= (E +m)

(
χ†AχA + χ†AχA

(
(~σ · ~p)2

(E +m)2

))
Using formulae given in the cover sheet we have:

(~σ · ~p)2 = (~p · ~p) + i~σ · (~p× ~p) = p2

and therefore

(~σ · ~p)2

(E +m)2
=

p2

(E +m)2
=

E2 −m2

(E +m)2
=
E −m
E +m

[3]

Finally, given that χ†AχA =
(

1 0
)( 1

0

)
= 1 we have

u†AuA = (E +m)
(

1 +
E −m
E +m

)
= 2E

[1]

Normalisation is proportional to energy to take into account relativistic con-
traction, particle density increases by γ = E/m. [1]

(b) [Unseen].

In the massless limit uA =

(
χA

(~σ · p̂)χA

)
(omitting the normalisation). [1]

ĥ =
1

2

(
~σ · p̂ 0

0 ~σ · p̂

)(
χA

(~σ · p̂)χA

)
=

1

2

(
(~σ · p̂)χA
(~σ · p̂)2χA

)
=

1

2

(
(~σ · p̂)χA

χA

)
since (~σ · p̂)2 = (p̂)2 = 1. [1]

On the other hand we have:

1

2
γ5uA =

1

2

(
0 1
1 0

)(
χA

(~σ · p̂)χA

)
=

1

2

(
(~σ · p̂)χA

χA

)

and therefore ĥuA = 1
2
γ5uA. [1]

The significance of this result is in the fact that it shows that in the massless
limit the chirality operator, 1

2
γ5, and the helicity operator, ĥ, are the same. [1]
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(c) [Covered in lectures].

[3]

(d) [Mostly covered in lectures].
If ψ transforms as ψ → ψeieθ then ψ̄ transforms as ψ̄ → ψ̄e−ieθ. Looking at
each term in the Lagrangian:

iψ̄γµ∂µψ → iψ̄e−ieθγµ∂µ
(
ψeieθ

)
= iψ̄e−ieθγµ

(
eieθ∂µψ + ie∂µθe

ieθψ
)

=

= iψ̄γµ∂µψ − eψ̄γµ∂µθψ

[3]

The second term is

eAµψ̄γ
µψ → eAµe

−ieθψ̄γµeieθψ = eAµψ̄γ
µψ

is unchanged. It is obvious that 1
4
FµνF

µν is also unchanged. Hence, LQED →
LQED − eψ̄γµ∂µθψ is not invariant. [2]

(e) [Covered in lectures].
Consider a transform of the form Aµ → Aµ + ∂µθ.
Then:

eAµψ̄γ
µψ → eAµψ̄γ

µψ + eψ̄γµ∂µθψ

and this cancels the gauge invariance violating term in (d). [2]
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4. (a) [Unseen].
The electron-neutron structure function expression can be obtained by replac-
ing the proton PDFs with neutron PDFs and using the isospin symmetry, i.e.
up(x) = dn(x):

F en
2 (x) =

4

9
x
[
d(x) + d̄(x)

]
+

1

9
x [u(x) + ū(x) + s(x) + s̄(x)]

where the strange quark content for the nucleons is the same since it comes
from the sea. [2]

(b) [Unseen].
Using the expressions for F ep

2 (x) and F en
2 (x) we have:

∫ 1

0

[F ep
2 (x)− F en

2 (x)]

x
dx =

1

3

∫ 1

0
(u(x)− d(x) + ū(x)− d̄(x))dx

[1]

Writing the quark PDFs in terms of valence and sea contributions and as-
suming that the quark and anti-quark sea contributions are the same, i.e.
uS(x) = ū(x) and dS(x) = d̄(x), the expression becomes:

∫ 1

0

[F ep
2 (x)− F en

2 (x)]

x
dx =

1

3

∫ 1

0
(uV (x)−dV (x)+uS(x)−dS(x)+ū(x)−d̄(x))dx =

=
1

3

∫ 1

0
(uV (x)− dV (x) + 2ū(x)− 2d̄(x))dx =

1

3
+

2

3

∫ 1

0
(ū(x)− d̄(x))dx

where we have used
∫ 1
0 uV (x) = 2 and

∫ 1
0 dV (x) = 1. [3]

The measured value can therefore be interpreted as∫ 1

0
(ū(x)− d̄(x))dx =

3

2
[(0.24− 0.33)± 0.03] = −0.14± 0.05

demonstrating that there is a deficit of ū quarks relative to d̄ quarks in the
proton. [2]

(c) [Covered in lectures].
The production of the Higgs boson (and other ”new” particles) comes from
collisions between partons (the Higgs production in the LHC it is dominated
by gluon-gluon fusion). The cross-section depends on partons PDFs. Un-
certainty in PDF translates directly into uncertainty in the Higgs production
cross-section. [2]
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(d) [Involves synthesising few ideas covered in lectures].
Example diagrams are below. Other suitable diagrams will be accepted.

[3]

(e) [Unseen].
Consider the Higgs decay to two photon with four-momenta, P1 = (E1, ~p1)
and P2 = (E2, ~p2). The Higgs invariant mass is m2

h = (P1 + P2)
2. [1]

Therefore,

m2
h = P 2

1 + P 2
2 + 2P1P2 = 0 + 0 + 2E1E2 − 2E1E2 cos θ

since mγ = 0 and Eγ = |~pγ|. [2]

Finally,

m2
h = 2E1E2(1− cos θ) = 4E1E2 sin2

(
θ

2

)
[1]

(f) [Covered in lectures].
Two photons would leave no tracks in the central tracking detector.
They will deposit energy in the electromagnetic calorimeter. The resulting
shower profiles are consistent with their EM origin.
The reconstructed invariant mass is consistent with the mass of the Higgs
boson. [3]
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5. (a) [Involves synthesising few ideas covered in lectures].
(No need to have coupling constants on the diagrams).

[2]

(b) [Unseen].
Only left-handed chiral currents participate in the CC- interaction, while both
left- and right-handed chiral currents contribute to the NC part of the inter-
action. [1]

Since the final states are the same the amplitudes of the left-handed chiral
currents for the CC and NC diagrams are added up, MCC

LL +MNC
LL . [1]

The spin-averaged matrix element for the mixed NC + CC interaction must
average over LL and LR contributions:

〈|M |2NC+CC〉 =
1

2

[(
MCC

LL +MNC
LL

)2
+
(
MNC

LR

)2]
[1]

Finally, using gZ/mZ = gW/mW and the expressions for individual matrix
elements we have:

〈|M |2NC+CC〉 =
1

2

(g2W s
m2
W

+ cL
g2Zs

m2
Z

)2

+

(
cR
g2Zs

m2
Z

1

2
(1 + cos θ∗)

)2
 =

=
1

2

g4W s
2

m4
W

[
(1 + cL)2 +

1

4
c2R (1 + cos θ∗)2

]
[2]

(c) [Involves synthesising few ideas covered in lectures].

[1]

The neutrino is produced in a LH chiral state and the anti-neutrino is pro-
duced in a RH chiral state. Because neutrinos are almost massless the chiral
states effectively correspond to helicity states. Therefore the decay will result
in a J = 1 final state (students can illustrate that with a diagram). This
violates conservation of angular momentum and therefore forbidden. [2]
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(d) [Unseen].
Using energy and momentum conservation in the pion rest frame we can write:

mπ = Eµ + Eν 0 = ~pµ + ~pν

[1]

In terms of four-vectors:
P 2
π = (Pµ + Pν)

2

m2
π = m2

µ + 2EµEν − 2~pµ~pν

[1]

since P 2
ν = m2

ν = 0. Using the energy and momentum conservation relations
above:

m2
π = m2

µ + 2(mπ − Eν)Eν + 2 |~pν |2 = m2
µ + 2mπEν

[1]

Finally,

Eν =
m2
π −m2

µ

2mπ

=
1402 − 1062

2 · 140
≈ 30 MeV

[1]

(e) [Covered in lectures].
The CP-violating phase in the PMNS matrix is linked to the νµ ↔ νe oscilla-
tions via θ13 mixing angle. [1]

A long-baseline beam of νµ and ν̄µ can be established with a far detector
looking at the appearance of νe and ν̄e. [1]

By comparing νµ → νe and ν̄µ → ν̄e oscillation probabilities one can establish
the phenomenon of CP-violation and measure the corresponding phase. [1]

(f) [Covered in lectures].
The observation of neutrinoless double beta decay, 0νββ. [1]

In order for this process to occur two conditions must be met: i) the emitted
neutrino can turn into an anti-neutrino to take part in the second inverse
β-decay; ii) the neutrino flips its helicity as it turns into an anti-neutrino.
The first condition cannot happen for Dirac particles and the second for mass-
less particles. [2]
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