
PHASM(G)442/2017 Model Answers

1. (a) [Covered in lectures, 2 marks].

Massive gauge bosons responsible for weak interactions, W± and Z, break
gauge invariance. [1]

WW scattering calculations violate unitarity, i.e. result in a probability > 1.
[1]

(b) [Unseen, 3 marks].

The Higgs mechanism was introduced in order to ”save” the gauge invariance
of the Lagrangian with massive gauge bosons. [1]

Under the simplest unitary U(1) transformation1 we have φ → φ′ = φeiqχ(x),
and therefore the even powers of φ will cancel out the exponential factor:

φ′2 = φ′φ′∗ = φφ∗eiqχ(x)e−iqχ(x) = φφ∗ = φ2.

maintaining the gauge invariance. [1]

An odd power of φ will introduce an extra eiqχ(x) factor, thus breaking the
gauge invariance. [1]

(c) [Unseen, 4 marks].

The number of Higgs events expected in the ATLAS detector is

NH = ε× L× σpp,

where ε is the detector efficiency, L is the integrated luminosity and σpp is the
Higgs production cross-section.
Putting the numerical data in we obtain:

NH = 1× 20 · 103fb× 10fb−1 = 2 · 105.

[2]

And finally, taking the Standard Model branching ratios:

N(H → bb̄) = 2 · 105 × 0.578 ≈ 1.2 · 105

N(H → γγ) = 2 · 105 × 2 · 10−3× = 400.

[2]

1U(1) symmetry group was used to explain the Higgs mechanism in the lectures due to its simplified
algebra.
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(d) [Covered in lectures, 4 marks].
Despite many more bb̄ pairs produced in the detector from H → bb̄ the H →
γγ process is more likely to be observed first. This is because two γ events
can be relatively easily identified without much background. They will have
a clear signature in the detector with no tracks left in tracking detectors and
energy depositions in electromagnetic calorimeter. [2]

On the contrary, H → bb̄ events will suffer from a large QCD background that
dominates pp collisions at the LHC. Detecting a small bump on a large (and
non-flat) background spectrum is very difficult and requires large statistics
and good control of systematics. [2]

(e) [Synthesis of ideas covered in lectures, 4 marks].
The reference to pp collisions at LHC energies and to the mass of the Higgs
boson is meant to test the knowledge of the dominant H production in gluon-
gluon fusion and decay to bb̄ as the dominant decay channel. If the Feynman
diagram is not given the reference to the above will still attract 1 mark.

Note: Drawing the decay products of W ’s is not required. [4]

(f) [Covered in lectures, 3 marks].
b-quarks are identified (tagged) using the so called displaced vertex method.
Given its lifetime the b-quark will travel (after hadronisation) a few mm before
decaying. Due to a relatively large mass of the b-quark the decay products
can be produced at a relatively large angle to the original b-quark direction.

Therefore the experimental signature in a collider detector is a jet of particles
emerging from the collision point (primary vertex) and a secondary vertex
from the b-quark decay displaced from the primary vertex by several mm. The
identification of the displaced vertices requires a sub-mm spatial resolution
and takes place in a innermost vertex (silicon) detector. [3]
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2. (a) [Covered in lectures, 2 marks.].

[2]

(b) [Synthesis of ideas covered in lectures, 6 marks].

Using the definition of the Mandelstam variables and neglecting the lepton
masses (i.e. p2i = m2

i = 0) we can write:

s = (p1+p2)
2 = 2p1 ·p2 t = (p1−p3)2 = −2p1 ·p3 u = (p1−p4)2 = −2p1 ·p4.

Therefore the spin-averaged matrix element becomes

〈|M|2〉 = 2e4
(

(p1p3)
2 + (p1p4)

2

(p1p2)2

)
.

[3]

Using the crossing symmetry argument illustrated in the figure below:

we obtain

〈|M|2〉 = 2e4
(

(p′1p
′
4)

2 + (p′1p
′
2)

2

(p′1p
′
3)

2

)
.

Finally, using the Mandelstam definition above we arrive at

〈|M|2〉 = 2e4
(
u2 + s2

t2

)
,

[3]
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(c) [Covered in lectures, 2 marks].

Note: Reference to Q2 = 100 GeV2 should trigger a DIS Feynman diagram
above. [2]

(d) [Unseen, 6 marks].

Using the notations in the Feynman diagram below

we have q = Pj − Pp and therefore:

y =
Pp · (Pj − Pp)

Pp · Pe
=
Pp · Pj
Pp · Pe

,

since P 2
p = M2

p = 0. [2]

The numerator can then be written as

Pp · Pj = Ep · Ej − ~pp · ~pj = Ep(Ej − pzj),

and the denominator is

Pp · Pe = Ep · Ee − ~pp · ~pe = 2EpEe,

where in the above we neglected the proton and electron masses. Therefore,

y =
Ej − pzj

2Ee
,

[4]
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(e) [Unseen, 4 marks].
We can write u(x) and ū(x) in terms of valence and sea quark contributions:

u(x) = uV (x) + uS(x) ū(x) = ūS(x).

[1]

The sea component arises from contributions of virtual quark-antiquark pairs.
It is therefore reasonable to assume that uS(x) = ūS(x). [1]

Hence,∫ 1

0

[u(x)− ū(x)] dx =

∫ 1

0

[uV (x) + uS(x)− uS(x)] dx =

∫ 1

0

uV (x)dx = 2.

[2]
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3. (a) [Synthesis of ideas covered in lectures, 6 marks].
It is necessary to check whether the matrix element of the pure vector and
pure axial-vector interactions is invariant under parity transformation.

Since M ∝ j1 · j2 we need to check the invariance of j1 · j2 under parity
transformation. [1]

For pure vector interaction:

jV = ψ̄γµφ
P̂−→ ψ̄γ0γµγ0φ,

and by components:

j0V
P̂−→ ψ̄γ0γ0γ0φ = j0V

jkV
P̂−→ ψ̄γ0γkγ0φ = −ψ̄γkγ0γ0φ = −jkV ,

where k = 1, 2, 3. Therefore,

jV 1 · jV 2
P̂−→ j0V 1 · j0V 2 −

∑
k=1,3

(−jkV 1)(−jkV 2) = jV 1 · jV 2.

Hence, parity is conserved in pure vector interactions (such as QED or QCD).
[3]

Using similar arguments for axial-vector currents, j0A
P̂−→ −j0A and jkA

P̂−→ jkA,
and therfore

jA1 · jA2
P̂−→ (−j0A1) · (−j0A2)−

∑
k=1,3

jkA1j
k
A2 = jA1 · jA2.

Hence, a pure axial-vector interaction also conserves parity. [2]

(b) [Covered in lectures, 4 marks].
From expressions obtained in part (a):

jV 1 · jA2
P̂−→ j0V 1 · (−j0A2)−

∑
k=1,3

(−jkV 1)j
k
A2 = −jV 1 · jA2.

Therefore jV · jA violates parity. [3]

Experimentally, weak interactions violate parity and therefore contain a com-
bination of V and A currents. From experiments, such as muon decay we
know that weak interaction is of V − A type. [1]

(c) [Similar but not this particular example is covered in lectures, 4
marks].
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[4]

(d) [Unseen, 6 marks].

In the kaon rest frame from the conservation of momentum and energy we
have:

~pµ = −~pν |~pµ| = |~pν | = Eν Eν = mK − Eµ = mK − γmµ.

From the 4-momentum conservation:

P 2
K = m2

K = (Pµ + Pν)
2 = P 2

µ + 2PµPν = m2
µ + 2 (EµEν − ~pµ · ~pν) .

[2]

However from 3-momentum and energy conservation above:

~pµ · ~pν = −E2
ν = − (mK − γmµ)2 .

[1]

Putting it all together:

m2
K = m2

µ + 2EµEν + 2 (mK − γmµ)2

m2
K = m2

µ + 2γmµ (mK − γmµ) + 2 (mK − γmµ)2

m2
K = m2

µ + 2γmµmK − 2γ2m2
µ + 2m2

K − 4γmKmµ + 2γ2m2
µ.

m2
K = m2

µ − 2γmµmK + 2m2
K .

From which we have the required:

γ =
m2
K +m2

µ

2mµmK

.

[3]
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4. (a) [Covered in lectures, 3 marks.].
The two relevant Feynman diagrams are:

[2]

(b) [Synthesis of ideas covered in lectures, 4 marks].

Both processes can be described as a point interaction with the Fermi coupling
constant characterising the strength of the interaction. Due to the Vud factor
the value of Gβ

F is a bit smaller than Gµ
F . [1]

The decay rate is Γ ∝ G2
F . Since Gµ

F = GF and Gβ
F = GF × |Vud| we expect

Gβ
F

Gµ
F

= |Vud| ≈ 0.974,
Γβ

Γµ
= (|Vud|)2 ≈ 0.949.

[3]

(c) [Covered in lectures, 2 marks].

In an appearance experiment the detector placed at a distance from a source
of neutrinos of a particular flavour, e.g. νe, searches for neutrinos of a different
flavour into which the initial neutrino beam can oscillate, e.g. νµ.

In a disappearance experiment a deficit of the original neutrino flavour at a
distant detector is searched for. [2]

(d) [Unseen, 3 marks].

In nuclear reactors only electron anti-neutrinos are emitted. For an appear-
ance experiment the far detector should identify either a µ+ or τ+ to detect
ν̄e → ν̄µ or ν̄e → ν̄τ oscillations respectively. [1]
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However, with the maximum energy of 9 MeV the reactor ν̄e will not be able
to produce a µ+ (mµ ≈ 106 MeV) or τ+ (mτ ≈ 1.8 GeV). Thus, an appearance
experiment with reactor ν̄e is not possible. [2]

(e) [Unseen, 5 marks].

The minimum energy of the neutrino necessary for its detection via the reac-
tion νµ + n → µ− + p requires the production of µ− and p at rest. In other
words this reaction is only kinematically possible if s ≥ (mµ +mp)

2, where s
is the centre-of-mass energy squared.

Consequently,

s = (Pν + Pn)2 = (Eν +mn)2 − E2
ν = 2Eνmn +m2

n ≥ (mµ +mp)
2.

[2]

For the neutrino minimum energy we have:

2Emin
ν mn +m2

n = (mµ +mp)
2.

Assuming mn ≈ mp,
2Emin

ν mn = m2
µ + 2mµmp,

from which

Emin
ν =

m2
µ + 2mµmp

2mn

.

[2]

Putting in the numerical values:

Emin
ν =

1062 + 2 · 106 · 1000

2 · 1000
≈ 112MeV.

[1]

(f) [Unseen, 4 marks].

In order to carry out an appearance νe → νµ experiment a pure νe beam with
an energy above 112 MeV2 needs to be created . [1]

νe beams can in principle be created from muon decays but they will be
contaminated by νµ. [1]

The only pure νe source is available from β+ radioactive isotopes (or K-
capture). [1]

These isotopes can be used to create radioactive ion beams and accelerate the
ions to momenta sufficient to delver νe beams with energies above 100 MeV. [1]

2Failing question (e) should not prevent the student from tackling question (f) based on the muon
mass argument − a pure νe beam above 100 MeV is still needed.
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5. (a) [Covered in lectures, 4 marks].
Consider the derivatives of the free-antiparticle plane wave solution ψ =
v(E, ~p)e−i(~p·~r−Et):

∂0ψ =
∂ψ

∂t
= iEψ; ∂1ψ =

∂ψ

∂x
= −ipxψ; ...

[2]

Substituting these into the Dirac equation (iγµ∂µ −m)ψ = 0 gives:(
−γ0E + γ1px + γ2py + γ3pz −m

)
v = 0

which can be written:
(γµpµ +m) v = 0

[2]

(b) [Unseen, 6 marks].

Taking the Hermitian conjugate of the Dirac equation:

[(γµpµ −m)u]† = u†
(
γµ†pµ −m

)
= 0

This can be rewritten as

u†γ0γ0
(
γµ†pµ −m

)
= u†γ0

(
γ0γµ†pµ − γ0m

)
= 0.

[2]

Using the identity γ0γµ† = γµγ0 that follows from:

γ0γ0† = γ0γ0; γ0γk† = −γ0γk = γkγ0 where k = 1, 2, 3,

[2]

we have:
ū
(
γµγ0pµ −mγ0

)
= ū (γµpµ −m) γ0 = 0.

Finally, multiplying both parts by γ0 we obtain the required:

ū (γµpµ −m) = 0.

[2]

(c) [Covered in lectures, 4 marks].

For the particle solution ψ = ue+i(~p·~r−Et) :

Ĥψ = i
∂

∂t

[
ue+i(~p·~r−Et)

]
= i2(−E)ue+i(~p·~r−Et) = Eψ,

10



Therefore E is the real eigenvalue of Ĥ and represent the physical energy of
the particle. [2]

For the anti-particle solution ψ = ve−i(~p·~r−Et) the same argument as above
will lead to a negative energy solution.

By swapping the sign of the Ĥ operator we obtain

Ĥ(v)ψ = −i ∂
∂t
ve−i(~p·~r−Et) = (−i)(−i)(−E)ve−i(~p·~r−Et) = Eψ,

i.e. positive energy solutions for anti-particles. [2]

(d) [Unseen, 6 marks.].
Using the identity (γ5)

2
= 1,

PRPR =
1

4

(
1 + γ5

) (
1 + γ5

)
=

1

4

(
1 + γ5 + γ5 +

(
γ5
)2)

=

1

4

(
2 + 2γ5

)
=

1

2

(
1 + γ5

)
= PR.

By analogy PLPL = PL and hence P 2
i = Pi. [3]

PRPL =
1

4

(
1 + γ5

) (
1− γ5

)
=

1

4

(
1−

(
γ5
)2)

= 0.

[2]

PL + PR =
1

2

(
1 + γ5 + 1− γ5

)
= 1.

[1]
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