PHASM(G)442/2017 Model Answers

1. (a) [Covered in lectures, 2 marks].

Massive gauge bosons responsible for weak interactions, $W^{ \pm}$and Z, break gauge invariance.
$W W$ scattering calculations violate unitarity, i.e. result in a probability >1.
(b) [Unseen, 3 marks].

The Higgs mechanism was introduced in order to "save" the gauge invariance of the Lagrangian with massive gauge bosons.
Under the simplest unitary $U(1)$ transformation ${ }^{1}$ we have $\phi \rightarrow \phi^{\prime}=\phi e^{i q \chi(x)}$, and therefore the even powers of ϕ will cancel out the exponential factor:

$$
\phi^{\prime 2}=\phi^{\prime} \phi^{\prime *}=\phi \phi^{*} e^{i q \chi(x)} e^{-i q \chi(x)}=\phi \phi^{*}=\phi^{2} .
$$

maintaining the gauge invariance.
An odd power of ϕ will introduce an extra $e^{i q \chi(x)}$ factor, thus breaking the gauge invariance.
(c) [Unseen, 4 marks].

The number of Higgs events expected in the ATLAS detector is

$$
N_{H}=\varepsilon \times L \times \sigma_{p p},
$$

where ε is the detector efficiency, L is the integrated luminosity and $\sigma_{p p}$ is the Higgs production cross-section.
Putting the numerical data in we obtain:

$$
N_{H}=1 \times 20 \cdot 10^{3} \mathrm{fb} \times 10 \mathrm{fb}^{-1}=2 \cdot 10^{5} .
$$

And finally, taking the Standard Model branching ratios:

$$
\begin{aligned}
& N(H \rightarrow b \bar{b})=2 \cdot 10^{5} \times 0.578 \approx 1.2 \cdot 10^{5} \\
& N(H \rightarrow \gamma \gamma)=2 \cdot 10^{5} \times 2 \cdot 10^{-3} \times=400 .
\end{aligned}
$$

[^0](d) [Covered in lectures, 4 marks].

Despite many more $b \bar{b}$ pairs produced in the detector from $H \rightarrow b \bar{b}$ the $H \rightarrow$ $\gamma \gamma$ process is more likely to be observed first. This is because two γ events can be relatively easily identified without much background. They will have a clear signature in the detector with no tracks left in tracking detectors and energy depositions in electromagnetic calorimeter.
On the contrary, $H \rightarrow b \bar{b}$ events will suffer from a large QCD background that dominates $p p$ collisions at the LHC. Detecting a small bump on a large (and non-flat) background spectrum is very difficult and requires large statistics and good control of systematics.
(e) [Synthesis of ideas covered in lectures, 4 marks].

The reference to $p p$ collisions at LHC energies and to the mass of the Higgs boson is meant to test the knowledge of the dominant H production in gluongluon fusion and decay to $b \bar{b}$ as the dominant decay channel. If the Feynman diagram is not given the reference to the above will still attract 1 mark.

Note: Drawing the decay products of W^{\prime} 's is not required.
(f) [Covered in lectures, 3 marks].
b-quarks are identified (tagged) using the so called displaced vertex method. Given its lifetime the b-quark will travel (after hadronisation) a few mm before decaying. Due to a relatively large mass of the b-quark the decay products can be produced at a relatively large angle to the original b-quark direction.
Therefore the experimental signature in a collider detector is a jet of particles emerging from the collision point (primary vertex) and a secondary vertex from the b-quark decay displaced from the primary vertex by several mm . The identification of the displaced vertices requires a sub-mm spatial resolution and takes place in a innermost vertex (silicon) detector.
2. (a) [Covered in lectures, 2 marks.].

[2]
(b) [Synthesis of ideas covered in lectures, 6 marks].

Using the definition of the Mandelstam variables and neglecting the lepton masses (i.e. $p_{i}^{2}=m_{i}^{2}=0$) we can write:
$s=\left(p_{1}+p_{2}\right)^{2}=2 p_{1} \cdot p_{2} \quad t=\left(p_{1}-p_{3}\right)^{2}=-2 p_{1} \cdot p_{3} \quad u=\left(p_{1}-p_{4}\right)^{2}=-2 p_{1} \cdot p_{4}$.
Therefore the spin-averaged matrix element becomes

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 e^{4}\left(\frac{\left(p_{1} p_{3}\right)^{2}+\left(p_{1} p_{4}\right)^{2}}{\left(p_{1} p_{2}\right)^{2}}\right) .
$$

Using the crossing symmetry argument illustrated in the figure below:

we obtain

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 e^{4}\left(\frac{\left(p_{1}^{\prime} p_{4}^{\prime}\right)^{2}+\left(p_{1}^{\prime} p_{2}^{\prime}\right)^{2}}{\left(p_{1}^{\prime} p_{3}^{\prime}\right)^{2}}\right)
$$

Finally, using the Mandelstam definition above we arrive at

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 e^{4}\left(\frac{u^{2}+s^{2}}{t^{2}}\right)
$$

(c) [Covered in lectures, 2 marks].

Note: Reference to $Q^{2}=100 \mathrm{GeV}^{2}$ should trigger a DIS Feynman diagram above.
(d) [Unseen, 6 marks].

Using the notations in the Feynman diagram below

we have $q=P_{j}-P_{p}$ and therefore:

$$
\begin{equation*}
y=\frac{P_{p} \cdot\left(P_{j}-P_{p}\right)}{P_{p} \cdot P_{e}}=\frac{P_{p} \cdot P_{j}}{P_{p} \cdot P_{e}}, \tag{2}
\end{equation*}
$$

since $P_{p}^{2}=M_{p}^{2}=0$.
The numerator can then be written as

$$
P_{p} \cdot P_{j}=E_{p} \cdot E_{j}-\vec{p}_{p} \cdot \vec{p}_{j}=E_{p}\left(E_{j}-p_{j}^{z}\right),
$$

and the denominator is

$$
P_{p} \cdot P_{e}=E_{p} \cdot E_{e}-\vec{p}_{p} \cdot \vec{p}_{e}=2 E_{p} E_{e}
$$

where in the above we neglected the proton and electron masses. Therefore,

$$
y=\frac{E_{j}-p_{j}^{z}}{2 E_{e}}
$$

(e) [Unseen, 4 marks].

We can write $u(x)$ and $\bar{u}(x)$ in terms of valence and sea quark contributions:

$$
u(x)=u_{V}(x)+u_{S}(x) \quad \bar{u}(x)=\bar{u}_{S}(x) .
$$

The sea component arises from contributions of virtual quark-antiquark pairs.
It is therefore reasonable to assume that $u_{S}(x)=\bar{u}_{S}(x)$.
Hence,

$$
\int_{0}^{1}[u(x)-\bar{u}(x)] d x=\int_{0}^{1}\left[u_{V}(x)+u_{S}(x)-u_{S}(x)\right] d x=\int_{0}^{1} u_{V}(x) d x=2 .
$$

3. (a) [Synthesis of ideas covered in lectures, $\mathbf{6}$ marks].

It is necessary to check whether the matrix element of the pure vector and pure axial-vector interactions is invariant under parity transformation.
Since $M \propto j_{1} \cdot j_{2}$ we need to check the invariance of $j_{1} \cdot j_{2}$ under parity transformation.
For pure vector interaction:

$$
j_{V}=\bar{\psi} \gamma^{\mu} \phi \xrightarrow{\hat{P}} \bar{\psi} \gamma^{0} \gamma^{\mu} \gamma^{0} \phi,
$$

and by components:

$$
\begin{gathered}
j_{V}^{0} \xrightarrow{\hat{P}} \bar{\psi} \gamma^{0} \gamma^{0} \gamma^{0} \phi=j_{V}^{0} \\
j_{V}^{k} \xrightarrow{\hat{P}} \bar{\psi} \gamma^{0} \gamma^{k} \gamma^{0} \phi=-\bar{\psi} \gamma^{k} \gamma^{0} \gamma^{0} \phi=-j_{V}^{k},
\end{gathered}
$$

where $k=1,2,3$. Therefore,

$$
j_{V 1} \cdot j_{V 2} \xrightarrow{\hat{P}} j_{V 1}^{0} \cdot j_{V 2}^{0}-\sum_{k=1,3}\left(-j_{V 1}^{k}\right)\left(-j_{V 2}^{k}\right)=j_{V 1} \cdot j_{V 2}
$$

Hence, parity is conserved in pure vector interactions (such as QED or QCD).
Using similar arguments for axial-vector currents, $j_{A}^{0} \xrightarrow{\hat{P}}-j_{A}^{0}$ and $j_{A}^{k} \xrightarrow{\hat{P}} j_{A}^{k}$, and therfore

$$
\begin{equation*}
j_{A 1} \cdot j_{A 2} \xrightarrow{\hat{P}}\left(-j_{A 1}^{0}\right) \cdot\left(-j_{A 2}^{0}\right)-\sum_{k=1,3} j_{A 1}^{k} j_{A 2}^{k}=j_{A 1} \cdot j_{A 2} \tag{2}
\end{equation*}
$$

Hence, a pure axial-vector interaction also conserves parity.
(b) [Covered in lectures, 4 marks].

From expressions obtained in part (a):

$$
j_{V 1} \cdot j_{A 2} \xrightarrow{\hat{P}} j_{V 1}^{0} \cdot\left(-j_{A 2}^{0}\right)-\sum_{k=1,3}\left(-j_{V 1}^{k}\right) j_{A 2}^{k}=-j_{V 1} \cdot j_{A 2} .
$$

Therefore $j_{V} \cdot j_{A}$ violates parity.
Experimentally, weak interactions violate parity and therefore contain a combination of V and A currents. From experiments, such as muon decay we know that weak interaction is of $V-A$ type.
c) [Similar but not this particular example is covered in lectures, 4 marks].

[4]
(d) [Unseen, 6 marks].

In the kaon rest frame from the conservation of momentum and energy we have:

$$
\vec{p}_{\mu}=-\vec{p}_{\nu} \quad\left|\vec{p}_{\mu}\right|=\left|\vec{p}_{\nu}\right|=E_{\nu} \quad E_{\nu}=m_{K}-E_{\mu}=m_{K}-\gamma m_{\mu} .
$$

From the 4-momentum conservation:

$$
P_{K}^{2}=m_{K}^{2}=\left(P_{\mu}+P_{\nu}\right)^{2}=P_{\mu}^{2}+2 P_{\mu} P_{\nu}=m_{\mu}^{2}+2\left(E_{\mu} E_{\nu}-\vec{p}_{\mu} \cdot \vec{p}_{\nu}\right) .
$$

However from 3-momentum and energy conservation above:

$$
\vec{p}_{\mu} \cdot \vec{p}_{\nu}=-E_{\nu}^{2}=-\left(m_{K}-\gamma m_{\mu}\right)^{2} .
$$

Putting it all together:

$$
\begin{gathered}
m_{K}^{2}=m_{\mu}^{2}+2 E_{\mu} E_{\nu}+2\left(m_{K}-\gamma m_{\mu}\right)^{2} \\
m_{K}^{2}=m_{\mu}^{2}+2 \gamma m_{\mu}\left(m_{K}-\gamma m_{\mu}\right)+2\left(m_{K}-\gamma m_{\mu}\right)^{2} \\
m_{K}^{2}=m_{\mu}^{2}+2 \gamma m_{\mu} m_{K}-2 \gamma^{2} m_{\mu}^{2}+2 m_{K}^{2}-4 \gamma m_{K} m_{\mu}+2 \gamma^{2} m_{\mu}^{2} \\
m_{K}^{2}=m_{\mu}^{2}-2 \gamma m_{\mu} m_{K}+2 m_{K}^{2}
\end{gathered}
$$

From which we have the required:

$$
\gamma=\frac{m_{K}^{2}+m_{\mu}^{2}}{2 m_{\mu} m_{K}}
$$

4. (a) [Covered in lectures, 3 marks.].

The two relevant Feynman diagrams are:

[2]
(b) [Synthesis of ideas covered in lectures, 4 marks].

Both processes can be described as a point interaction with the Fermi coupling constant characterising the strength of the interaction. Due to the $V_{u d}$ factor the value of G_{F}^{β} is a bit smaller than G_{F}^{μ}.
The decay rate is $\Gamma \propto G_{F}^{2}$. Since $G_{F}^{\mu}=G_{F}$ and $G_{F}^{\beta}=G_{F} \times\left|V_{u d}\right|$ we expect

$$
\begin{equation*}
\frac{G_{F}^{\beta}}{G_{F}^{\mu}}=\left|V_{u d}\right| \approx 0.974, \quad \frac{\Gamma^{\beta}}{\Gamma^{\mu}}=\left(\left|V_{u d}\right|\right)^{2} \approx 0.949 \tag{3}
\end{equation*}
$$

The decay re G_{F}. G_{F} and $G_{F}=G_{F} \times\left|V_{u d}\right|$ we expect
(c) [Covered in lectures, 2 marks].

In an appearance experiment the detector placed at a distance from a source of neutrinos of a particular flavour, e.g. ν_{e}, searches for neutrinos of a different flavour into which the initial neutrino beam can oscillate, e.g. ν_{μ}.
In a disappearance experiment a deficit of the original neutrino flavour at a distant detector is searched for.
(d) [Unseen, 3 marks].

In nuclear reactors only electron anti-neutrinos are emitted. For an appearance experiment the far detector should identify either a μ^{+}or τ^{+}to detect $\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}$ or $\bar{\nu}_{e} \rightarrow \bar{\nu}_{\tau}$ oscillations respectively.

However, with the maximum energy of 9 MeV the reactor $\bar{\nu}_{e}$ will not be able to produce a $\mu^{+}\left(m_{\mu} \approx 106 \mathrm{MeV}\right)$ or $\tau^{+}\left(m_{\tau} \approx 1.8 \mathrm{GeV}\right)$. Thus, an appearance experiment with reactor $\bar{\nu}_{e}$ is not possible.
(e) [Unseen, 5 marks].

The minimum energy of the neutrino necessary for its detection via the reaction $\nu_{\mu}+n \rightarrow \mu^{-}+p$ requires the production of μ^{-}and p at rest. In other words this reaction is only kinematically possible if $s \geq\left(m_{\mu}+m_{p}\right)^{2}$, where s is the centre-of-mass energy squared.
Consequently,

$$
s=\left(P_{\nu}+P_{n}\right)^{2}=\left(E_{\nu}+m_{n}\right)^{2}-E_{\nu}^{2}=2 E_{\nu} m_{n}+m_{n}^{2} \geq\left(m_{\mu}+m_{p}\right)^{2} .
$$

For the neutrino minimum energy we have:

$$
2 E_{\nu}^{\min } m_{n}+m_{n}^{2}=\left(m_{\mu}+m_{p}\right)^{2} .
$$

Assuming $m_{n} \approx m_{p}$,

$$
2 E_{\nu}^{\min } m_{n}=m_{\mu}^{2}+2 m_{\mu} m_{p}
$$

from which

$$
\begin{equation*}
E_{\nu}^{\min }=\frac{m_{\mu}^{2}+2 m_{\mu} m_{p}}{2 m_{n}} \tag{2}
\end{equation*}
$$

Putting in the numerical values:

$$
\begin{equation*}
E_{\nu}^{\min }=\frac{106^{2}+2 \cdot 106 \cdot 1000}{2 \cdot 1000} \approx 112 \mathrm{MeV} \tag{1}
\end{equation*}
$$

Puting in mornal valus
(f) [Unseen, 4 marks].

In order to carry out an appearance $\nu_{e} \rightarrow \nu_{\mu}$ experiment a pure ν_{e} beam with an energy above $112 \mathrm{MeV}^{2}$ needs to be created .
ν_{e} beams can in principle be created from muon decays but they will be contaminated by ν_{μ}.
The only pure ν_{e} source is available from β^{+}radioactive isotopes (or K capture).
These isotopes can be used to create radioactive ion beams and accelerate the ions to momenta sufficient to delver ν_{e} beams with energies above 100 MeV .

[^1]5. (a) [Covered in lectures, 4 marks].

Consider the derivatives of the free-antiparticle plane wave solution $\psi=$ $v(E, \vec{p}) e^{-i(\vec{p} \cdot \vec{r}-E t)}:$

$$
\begin{equation*}
\partial_{0} \psi=\frac{\partial \psi}{\partial t}=i E \psi ; \quad \partial_{1} \psi=\frac{\partial \psi}{\partial x}=-i p_{x} \psi ; \quad \ldots \tag{2}
\end{equation*}
$$

Substituting these into the Dirac equation $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$ gives:

$$
\left(-\gamma^{0} E+\gamma^{1} p_{x}+\gamma^{2} p_{y}+\gamma^{3} p_{z}-m\right) v=0
$$

which can be written:

$$
\begin{equation*}
\left(\gamma^{\mu} p_{\mu}+m\right) v=0 \tag{2}
\end{equation*}
$$

(b) [Unseen, 6 marks].

Taking the Hermitian conjugate of the Dirac equation:

$$
\left[\left(\gamma^{\mu} p_{\mu}-m\right) u\right]^{\dagger}=u^{\dagger}\left(\gamma^{\mu \dagger} p_{\mu}-m\right)=0
$$

This can be rewritten as

$$
u^{\dagger} \gamma^{0} \gamma^{0}\left(\gamma^{\mu \dagger} p_{\mu}-m\right)=u^{\dagger} \gamma^{0}\left(\gamma^{0} \gamma^{\mu \dagger} p_{\mu}-\gamma^{0} m\right)=0 .
$$

Using the identity $\gamma^{0} \gamma^{\mu \dagger}=\gamma^{\mu} \gamma^{0}$ that follows from:

$$
\begin{equation*}
\gamma^{0} \gamma^{0 \dagger}=\gamma^{0} \gamma^{0} ; \quad \gamma^{0} \gamma^{k \dagger}=-\gamma^{0} \gamma^{k}=\gamma^{k} \gamma^{0} \quad \text { where } \quad k=1,2,3, \tag{2}
\end{equation*}
$$

we have:

$$
\bar{u}\left(\gamma^{\mu} \gamma^{0} p_{\mu}-m \gamma^{0}\right)=\bar{u}\left(\gamma^{\mu} p_{\mu}-m\right) \gamma^{0}=0 .
$$

Finally, multiplying both parts by γ^{0} we obtain the required:

$$
\bar{u}\left(\gamma^{\mu} p_{\mu}-m\right)=0
$$

(c) [Covered in lectures, 4 marks].

For the particle solution $\psi=u e^{+i(\vec{p} \cdot \vec{r}-E t)}$:

$$
\hat{H} \psi=i \frac{\partial}{\partial t}\left[u e^{+i(\vec{p} \cdot \vec{r}-E t)}\right]=i^{2}(-E) u e^{+i(\vec{p} \cdot \vec{r}-E t)}=E \psi,
$$

Therefore E is the real eigenvalue of \hat{H} and represent the physical energy of the particle.
For the anti-particle solution $\psi=v e^{-i(\vec{p} \cdot \vec{r}-E t)}$ the same argument as above will lead to a negative energy solution.
By swapping the sign of the \hat{H} operator we obtain

$$
\hat{H}^{(v)} \psi=-i \frac{\partial}{\partial t} v e^{-i(\vec{p} \cdot \vec{r}-E t)}=(-i)(-i)(-E) v e^{-i(\vec{p} \cdot \vec{r}-E t)}=E \psi,
$$

i.e. positive energy solutions for anti-particles.
(d) [Unseen, 6 marks.].

Using the identity $\left(\gamma^{5}\right)^{2}=1$,

$$
\begin{gather*}
P_{R} P_{R}=\frac{1}{4}\left(1+\gamma^{5}\right)\left(1+\gamma^{5}\right)=\frac{1}{4}\left(1+\gamma^{5}+\gamma^{5}+\left(\gamma^{5}\right)^{2}\right)= \\
\frac{1}{4}\left(2+2 \gamma^{5}\right)=\frac{1}{2}\left(1+\gamma^{5}\right)=P_{R} . \tag{3}
\end{gather*}
$$

By analogy $P_{L} P_{L}=P_{L}$ and hence $P_{i}^{2}=P_{i}$.

$$
\begin{gather*}
P_{R} P_{L}=\frac{1}{4}\left(1+\gamma^{5}\right)\left(1-\gamma^{5}\right)=\frac{1}{4}\left(1-\left(\gamma^{5}\right)^{2}\right)=0 \tag{2}\\
P_{L}+P_{R}=\frac{1}{2}\left(1+\gamma^{5}+1-\gamma^{5}\right)=1
\end{gather*}
$$

[^0]: ${ }^{1} \mathrm{U}(1)$ symmetry group was used to explain the Higgs mechanism in the lectures due to its simplified algebra.

[^1]: ${ }^{2}$ Failing question (e) should not prevent the student from tackling question (f) based on the muon mass argument - a pure ν_{e} beam above 100 MeV is still needed.

