CALICE/EUDET CLink

Table of Contents

1Introduction and Overview
1

2Physical Link
2

3Signals Definitions and Detail
3

3.1CLOCK_L2D
4

3.2DATA_L2D
4

3.3DATA_D2L
4

3.4ASYNC_L2D
4

3.5GEN_D2L
4

4Communications Design
4

4.1Physical hardware/firmware design
4

4.2Logical Link Protocol
6

4.3SYNCCMD and COMMAND
7

4.4LDA-DIF Data Packet
8

4.5LDA-DIF Trigger Line
8

5Clock and Control Interface
8

5.1CLOCK
9

5.2TRAINSYNC_OUT
9

5.3ASYNC_OUT
9

5.4GEN_IN
9

1 Introduction and Overview

The CALICE/EUDET DAQ is hardware is arranged as a multi-tiered system

<hacked from Bart, made slightly more generic (no 'slab')>

Very Front-End (VFE) chips are embedded on modules residing inside the active detector volume. A slab is serviced by a unit sitting at the slab edge - the Detector InterFace board (DIF). The DIFs read VFE data, assert control signals and distribute clock signals and configuration data to the VFE chips.

One DIF services a single module, hosting many tens of VFE chips. As, for example, the barrel calorimeter counts over 6000 modules, servicing DIFs individually from the outside of the detector is not feasible. A separate unit is introduced to reduce the link count of the DIF to off-detector DAQ interface.

Links carrying clock, data and controls signals connect the DIFs to the Link/Data Aggregators (LDAs). These links make use of the existing HDMI cable standard for cables and connectors. The data of many DIF links is multiplexed onto a few high-bandwidth links. In the reverse direction, clock signals and control commands are sent to the LDA to be distributed towards the DIFs.

The LDAs are connected to an Off-Detector Receiver (ODR), hosted by a commodity PC. At this stage, data can be stored locally or sent over a high performance switched network.

A separate Clock and Controls Card (CCC) deals with the distribution of the collider clock, and is used for the distribution of low-latency detector. To facilitate testing the CCC connections to stand-alone DIFs (and LDAs) the same cabling standard is used. A schematic overview of the DAQ system is depicted in the Figure below.

[image: image1.png]DIF

DIF

DIF

DIF

storage

2 Physical Link

The High Definition Multimedia Interface (HDMI ref: http://en.wikipedia.org/wiki/HDMI) standard for cables and connectors were selected for LDA-DIF communication. This supports high bandwidth (>160MHz), 4 individually shielded twisted-pairs, an unshielded pair and some additional conductors. These connections have been assigned non-HDMI functions appropriate to our needs, but ground and power assignments are consistent with the HDMI specification. Signal details are in Table 2, pinout is in Table 1.

Pin
Signal Name
Description

1
CLOCK_L2D+
LDA to DIF LVDS Clock +

2
RG1
CLOCK_L2D shielding

3
CLOCK_L2D-
LDA to DIF LVDS Clock +

4
DATA_L2D+
LDA to DIF LVDS Data +

5
RG2
DATA_L2D shielding

6
DATA_L2D-
LDA to DIF LVDS Data -

7
DATA_D2L+
DIF to LDA LVDS Data +

8
RG3
DATA_D2L shielding

9
DATA_D2L-
DIF to LDA LVDS Data +

10
GEN_D2L+
DIF to LDA General Use +

11
RG4
GEN_D2L shielding

12
GEN_D2L-
DIF to LDA General Use -

13
2V5
Unused (2V5 power)

14
3V3
Unused (3V3 power)

15
ASYNC_L2D+
LDA to DIF Asynchronous + (not shielded)

16
ASYNC_L2D-
LDA to DIF Asynchronous – (not shielded)

17
RG5
Cable Shield

18
GND
Ground (for power)

19
GND
Ground (for power)

Table 1: CLink pinout.

3 Signals Definitions and Detail

As mentioned, the HDMI cable signals are grouped mostly in twisted pairs, some with shields (STP), one without (UTP). These groups are our signals as shown in Table 2.

CLink Signal
Direction
Function
Type

CLOCK_L2D
LDADIF
Distributed DIF Clock
STP

DATA_L2D
LDADIF
Data to DIF (mainly configuration)
STP

DATA_D2L
DIFLDA
Data from DIF (mainly events)
STP

ASYNC_L2D
LDADIF
Asynchronous trigger
UTP*

GEN_D2L
DIFLDA
General use
STP

* Twisted pair not guaranteed by HDMI specification but seen in commercial cables.

Table 2: CLink signals.

3.1 CLOCK_L2D

Fast clock, derived from the machine clock. Expected to be 50-100MHz. This clock is used as the bit-clock for serial data transfer.

3.2 DATA_L2D

Data transfer from LDA to DIF. Transferred using 8b/10b encoding (allowing AC coupling).

Operates in 3 Modes: DATA, COMMAND and SYNCCMD.

· DATA: Serialised configuration data sent from LDA to DIF. It is FIFOd and at both ends and not time critical.

· COMMAND: Using special 8b/10b K characters, commands can be sent, even during a data transfer to the DIFs. There are 256 types of command available.

· SYNCCMD: This is a special type of command that incorporates timing information. It is used to transfer timing signals (note this is not for low-latency signalling, it is for fixed/known latency signalling).

3.3 DATA_D2L

8b/10b link for transfering event data from a DIF to it's LDA. This signal is also used to setup the link

3.4 ASYNC_L2D

Non-clocked (but still AC coupled) for low-latency pulses.

3.5 GEN_D2L

As yet unspecified (AC coupled) for DIF to LDA communication.

A detailed description of these signals and their operation is given in the

4 Communications Design

4.1 Physical hardware/firmware design

The link is designed to provide a self contained module that allows the “application” firmware to ignore most of the internals. It contains various state machines that perform operations on power up and during running.

The data is presented on a 16bit, 2 byte wide interface. For transmission it is 8B10B encoded, and the application firmware can specify if bytes are “K” Control characters or not. A “ready” signal is sent to the user firmware 1 clock cycle before new data is required, if the application does not present data at the next clock with a data valid qualifier then an “Idle” sequence will be transmitted to keep the link alive.

After power up the link attempts to train and synchronise with its partner. This is done in several stages.

· LDA holds line idle for 128 bit clocks, causing any DIF to reset its state machine.

· LDA transmits 32 IDLE sequences to let the DIF obtain bit lock.

· If the link is set to come up, then the LDA switches to transmitting LINK_UP sequence. Otherwise it keeps sending ILDE. If the link is set to do a round trip delay calculation then it will transmit LOOPBACK sequence.

· IF while sending LINK_UP we see 3 LINK_ACK's we then wait for the DIF to begin sending the IDLE sequence, indicating it is locked and running. Once this happens then control of the link TX is handed over the user firmware.

· IF we're sending the LOOPBACK sequence, and we receive confirmation the remote is looped back, we begin sending random data and perform the calculation for delay times. To exit, we transmit the LOOP_EXIT sequence, and re-initializing the link from the start. This will clear the DIF and bring it back up in normal mode.

· At any time during normal operation a loss of signal detected will trigger a reinitialization of the link, the DIF losing sync will trigger it to not send data for long enough to trigger the LDA to also go into reinitialization.

· During normal operation the round trip delay calculation can be performed at any time.

· During running, the low lever bit sync state machine will monitor for Disparity and Code errors, and if those occur more than 3 in a row it will flag the link is down, and signal to begin link reinitialization.

Status registers accessible by the LDA state machine allow monitoring and controlling of the link. A simple 3 bit status line allows the user firmware to monitor the link status in real time, so that it can determine when it has access to the TX and RX data.

The firmware block for the links is as follows:

entity lda_dif_links is

 port (

 clk : in std_logic; -- Main serial clock in

 rst : in std_logic; -- Main serial rst in

 -- Serial LDA_DIF links

 dif_serial_in : in std_logic_vector(MAX_DIFS downto 1);

 dif_serial_out : out std_logic_vector(MAX_DIFS downto 1);

 dif_serial_clk : out std_logic; -- Master clock out

 -- DIF status lines.

 dif_link_status : out link_status_array;

 -- DIF parallel links. MAX_DIFS things in an array

 dif_parallel_tx : in link_data_array;

 dif_parallel_tx_k : in link_misc_array;

 dif_parallel_tx_en : in std_logic_vector(MAX_DIFS downto 1);

 dif_parallel_tx_rdy : out std_logic_vector(MAX_DIFS downto 1);

 dif_parallel_rx : out link_data_array;

 dif_parallel_rx_k : out link_misc_array;

 dif_parallel_rx_valid : out std_logic_vector(MAX_DIFS downto 1);

 dif_parallel_rx_code_err : out link_misc_array;

 dif_parallel_rx_disp_err : out link_misc_array;

 -- Management interface

 host_data_in : in std_logic_vector(15 downto 0);

 host_data_out : out std_logic_vector(15 downto 0);

 host_data_add : in std_logic_vector(5 downto 0); -- 64 regs

 host_wr : in std_logic;

 host_rd : in std_logic

);

end entity lda_dif_links;

The DIF SERDES block contains a similar structure to this, and has internally the corresponding link negotiating state machines:

entity dif_module is

 port (

 serial_clk : in std_logic;

 serial_rst : in std_logic;

 dif_link_restart : in std_logic; -- Re neg the link.

 dif_link_status : out std_logic_vector(2 downto 0); -- See above.

 clk5 : out std_logic;

 clk5_stb : out std_logic_vector(19 downto 0);

 -- Serial Side

 dif_serial_in : in std_logic;

 dif_serial_out : out std_logic;

 -- Local side of things.

 dif_parallel_tx : in std_logic_vector(15 downto 0);

 dif_parallel_tx_k : in std_logic_vector(1 downto 0);

 dif_parallel_tx_en : in std_logic;

 dif_parallel_tx_rdy : out std_logic;

 dif_parallel_rx : out std_logic_vector(15 downto 0);

 dif_parallel_rx_k : out std_logic_vector(1 downto 0);

 dif_parallel_rx_valid : out std_logic;

 dif_parallel_rx_code_err : out std_logic_vector(1 downto 0);

 dif_parallel_rx_disp_err : out std_logic_vector(1 downto 0)

);

end entity dif_module;

Here there also exists a clk5, which is a 1:20 divided bit clock, that is synchronised to the word clock. It also exports 20 strobe lines, that can be used for timing purposes by the DIF. During link changes, these should not be used, only when the link is confirmed as being established.

4.2 Logical Link Protocol

The LDA-DIF link is based along a packet system, where the LDA forwards data packets to the DIF without having to do any detailed decoding of them internally. The ODR/Run control software is expected to build the correct packets for the type of DIF that is connected. The ODR-LDA packet format is shown on page .

The links are 8B10B encoded and this allows the usage of “K-Codes” to denote special functions, see a good web page on 8B10B for full description of this. Several of these are pre-defined, and are used by the Link protocol state machines to control the link. Others will be used to control the link protocol (Partially ripped off from Gigabit Ethernet specification.)

K Character
Function

K28.5
Comma Character, used in the control of the low level link protocol. Should never be sent by User-Logic.

K.28.7
Not Used... EVER EVER EVER. Can cause issues if mixed with other symbols, and form a “fake” synchronisation sequence.

K27.7
Signals Start of DATA Frame. (/S/)

K29.7
Signals End of DATA Frame. (/T/)

K23.7
Carrier Extend. Used to PAD the end of a data frame out to an even number of Symbols, so that next frame, or IDLE sequence starts on an even footing. (/R/)

K28.0
Signals the next symbol is a SYNCCMD.

K28.3
Signals the next symbol is a COMMAND.

Several special sequences of symbols are defined, known as Ordered Sets, some of which are used by the low level state machines to handle the link. By default the link will, when idle, be sending/receiving IDLE sequences.

Set
Sequence
Comment

/I1/
/K28.5/D5.6/
Idle sequence, sent when running DP is +, flips it to -. Sent automatically.

/I2/
/K28.5/D16.2/
Idle sequence, sent when running DP is -, maintains it as -. Sent automatically.

/EPD/
/T/R/ or /T/R/R/
Used to end a data frame, the addition of an extra /R/ is used to pad things out to an even number.

/LOOP/
/K28.5/D12.6/
Low-level link loop back start (DON'T SEND from User-Logic)

/ENDLOOP/
/K28.5/D16.7/
Low-level link loop back end (DON'T SEND from User-Logic)

/LINKSTART/
/K28.5/D1.4/
Link Start. (DON'T SEND from User-Logic)

/LINKACK/
/K28.5/D30.3/
Link Start ACK. (DON'T SEND from User-Logic)

4.3 SYNCCMD and COMMAND

These are special command words that can be sent at any time, even during a data packet. If they are during a data packet, then the packet is paused for the duration of the commands transfer and then continues. Any Data Packet CRC checking will need to be paused, as the command will not be part of it.

The commands are consist of a single K Character followed by a single data character. These will always occur such that the K is in the lower 8 bits of the serdes word, and the upper 8 bits is the data character.

For the SYNCCMD the data is arranged so that 5 bits represent an “offset” into the normal word clock and 3 bits represent the command. Currently, there is only 1 command.

SYNCCMD = /K28.0/<[0:2 Command][3:7 Offset]>/

For the COMMAND the data is 6 bits, with 2 bits to indicate some routing status. Broadcast set means it should be passed along to the Neighbour DIF, as well as being acted upon by the receiving DIF. Neighbour set means that the receiving DIF should not act up on it, but pass it along. If neither is set, then the receiving DIF acts upon it alone.

COMMAND = /K28.3/<[0:5 Command][6 Broadcast][7 Neighbour]>/

Further ideas about this mechanism are welcome, it needs to be tested on a prototype to make sure its stable and does what is needed.

4.4 LDA-DIF Data Packet

It is envisioned that the LDA will simply pass over any data packets from the ODR to the DIF. However it might require ACK/NAK processing, which would come back down the LINK and this needs to be thought about.

4.5 LDA-DIF Trigger Line

We can use the line to signal a simple asynchronous pulse to the DIF, probably used as a trigger or some such. The lines are AC coupled so something more complex than a simple 0-1 transition will be used. This is likely to be done entirely on the HDMI interface board, and not involve the LDA at all, or if it does, the LDA will also be a slave to the HDMI board and not generate the pulse itself. A “FULL/BUSY” line is also envisioned as coming back, and basically be the reverse of the trigger. Again the LDA will probably just get a single copy of it, and the HDMI FPGA will OR together all channels, and output it direct to the CCC box.

5 Clock and Control Interface

The Clock and Control Card (CCC) preferably communicates using a subset of the CLink interface.

Connections to ODR, LDA or DIF can be made using the same HDMI cabling and connectors, with a subset of the signals used. These are shown in Table 3.

CLink Signal
CCC Signal
Function

CLOCK_L2D
CLOCK_OUT
Clock

DATA_L2D
TRAINSYNC_OUT
Trainsync signal output

DATA_D2L
Unused
Unused

ASYNC_L2D
ASYNC_OUT
Asynchronous signal

GEN_D2L
GEN_IN
General purpose

Shields

Terminated zzz

Table 3: CCC CLink signal usage

5.1 CLOCK

The CCC pinouts match those of the LDA and the board is designed to be used as a pseudo-LDA for stand-alone DIF testing (using USB for readout).

A subset of the standard LDA link (detailed in <zzz ref:Marc>) is used by the CCC (see table zzz)

5.2 TRAINSYNC_OUT

This command sets-up the the synchronisation of all the front-ends.

An external signal will be synchronized to the clock and tranmitted as a single clock-period wide pulse to the LDA.

A possible upgrade (CPLD resources permitting) is to allow a CCC plugged directly into a DIF to send a commands. For this option the TRAINSYNC_OUT signal must be compatible with LDA DATA_L2D signaling (8b/10b + CLINK zzz) protocol. To avoid implementing an entire LDA link encoder block in the CPLD, a simplified 8b/10b encoder will be used with hardwired sequences as needed.

5.3 ASYNC_OUT

Signal

5.4 GEN_IN

, hardware OR available

