### Overview: Diffraction in ep and pp collisions

#### Graeme Watt

University College London

#### Workshop on Future Prospects in QCD at High Energy Brookhaven National Laboratory 20th July 2006

In collaboration with H. Kowalski, A.D. Martin, L. Motyka and M.G. Ryskin

# Outline

### 1 Introduction

### 2 Exclusive diffraction in ep collisions

Exclusive processes within collinear factorization Exclusive processes within the dipole picture Dipole picture in the non-forward direction Impact parameter dependent dipole cross sections Description of HERA vector meson data Description of HERA DVCS data

### **3** Inclusive diffraction in *ep* collisions

Diffractive DIS kinematics and structure functions Collinear factorization in DDIS Perturbative Pomeron contribution to DDIS Analysis of HERA DDIS data Non-linear evolution of inclusive PDFs

### **4** Diffraction in pp and $p\bar{p}$ collisions

Factorization breaking in diffractive hadron-hadron collisions Exclusive diffractive Higgs production at LHC

**5** Summary and outlook

# Outline



### **2** Exclusive diffraction in *ep* collisions

Exclusive processes within collinear factorization Exclusive processes within the dipole picture Dipole picture in the non-forward direction Impact parameter dependent dipole cross sections Description of HERA vector meson data Description of HERA DVCS data

### Inclusive diffraction in ep collisions

Diffractive DIS kinematics and structure functions Collinear factorization in DDIS Perturbative Pomeron contribution to DDIS Analysis of HERA DDIS data Non-linear evolution of inclusive PDFs

4 Diffraction in pp and pp̄ collisions

Factorization breaking in diffractive hadron–hadron collisions Exclusive diffractive Higgs production at LHC

**5** Summary and outlook

# What is diffraction?

Two equivalent definitions of what is meant by 'diffraction' in high-energy physics:

- "A reaction in which no quantum numbers are exchanged between the colliding particles is, at high energies, a diffractive reaction." [Good–Walker,'60]
- 2 "A diffractive reaction is characterized by a Large, non-exponentially suppressed, Rapidity Gap (LRG) in the final state." [Bjorken,'92]



Diffraction is 'Pomeron' ( $\mathbb{P}$ ) exchange!

### What is the 'Pomeron'?

• In Regge theory, asymptotic behavior  $(s \gg |t|)$  of cross sections given by

$$\sigma_{\rm tot} \sim s^{\alpha(0)-1}, \quad \mathrm{d}\sigma_{\rm el}/\mathrm{d}t \sim s^{2[\alpha(t)-1]}, \quad \alpha(t) = \alpha(0) + \alpha' t.$$

- The 'Pomeron' was a Regge trajectory with intercept α<sub>P</sub>(0) = 1 introduced to explain the asymptotically constant total cross sections expected in the '60s.
- Fit to soft hadron-hadron data gives 'soft' (or non-perturbative) Pomeron [Donnachie-Landshoff, hep-ph/9209205]:

$$\alpha_{\mathbb{P}}(t) = \alpha_{\mathbb{P}}(0) + \alpha'_{\mathbb{P}} t = 1.08 + (0.25 \text{ GeV}^{-2}) t.$$

- In pQCD, the 'hard' (or perturbative) Pomeron is a parton ladder, usually satisfying either BFKL evolution (strongly-ordered longitudinal momenta) or DGLAP evolution (strongly-ordered transverse momenta).
- Regge phenomenology useful in quantifying whether a process is 'soft' or 'hard'. 'Hard' processes have a higher effective  $\alpha_{\mathbb{P}}(0)$ , e.g., fit small- $x_{Bj}$  HERA data to

$$\sigma_{\mathrm{tot}}^{\gamma^* p}(\mathsf{x}_{\mathrm{Bj}}, Q^2) = c(Q^2) \, \mathsf{x}_{\mathrm{Bj}}^{-\lambda_{\mathrm{tot}}(Q^2)}, \quad \text{where} \quad \lambda_{\mathrm{tot}} = \alpha_{\mathbb{P}}(0) - 1.$$

 Open question: how to unify 'soft' and 'hard' Pomerons? Insight from gauge/string duality [e.g. Brower–Polchinski–Strassler–Tan, hep-th/0603115]?



### Some introductory references

- Proceedings of "HERA and the LHC: A Workshop on the implications of HERA for LHC physics" [hep-ph/0601013].
  - See in particular: M. Arneodo and M. Diehl, "Diffraction for non-believers" [hep-ph/0511047].
  - Ongoing meetings: see http://www.desy.de/~heralhc/.
- L. Frankfurt, M. Strikman and C. Weiss, "Small-x physics: From HERA to LHC and beyond", Ann. Rev. Nucl. Part. Sci. 55, 403 (2005) [hep-ph/0507286].
- B. Z. Kopeliovich, I. K. Potashnikova and I. Schmidt, "Diffraction in QCD", hep-ph/0604097.
- Textbooks:
  - V. Barone and E. Predazzi, "High-energy particle diffraction", Heidelberg, Germany: Springer-Verlag (2002).
  - J. R. Forshaw and D. A. Ross, "Quantum chromodynamics and the Pomeron", Cambridge, UK: Univ. Pr. (1997).

# Outline

### 1 Introduction

### 2 Exclusive diffraction in ep collisions

Exclusive processes within collinear factorization Exclusive processes within the dipole picture Dipole picture in the non-forward direction Impact parameter dependent dipole cross sections Description of HERA vector meson data Description of HERA DVCS data

### Inclusive diffraction in ep collisions

Diffractive DIS kinematics and structure functions Collinear factorization in DDIS Perturbative Pomeron contribution to DDIS Analysis of HERA DDIS data Non-linear evolution of inclusive PDFs

**4** Diffraction in pp and  $p\bar{p}$  collisions

Factorization breaking in diffractive hadron-hadron collisions Exclusive diffractive Higgs production at LHC

**5** Summary and outlook

### Collinear factorization for exclusive hard processes Collins, Frankfurt, Strikman [hep-ph/9611433]:

$$\mathcal{A}(\gamma_L^* p \to V p) = \sum_{i,j} \int_0^1 \mathrm{d}z \int \mathrm{d}x_1 \underbrace{f_{i/p}(x_1, x - x_1, t; \mu)}_{f_{i/p}(x_1, x - x_1, t; \mu)} \underbrace{\mathsf{H}_{ij}(x_1, x, z, Q^2; \mu)}_{\mathsf{H}_{ij}(x_1, x, z, Q^2; \mu)} \underbrace{\mathsf{Meson \ dist. amp.}}_{\phi_j^V(z, \mu)}$$

+ power-suppressed corrections.



Kinematic variables:

- Label 4-momenta of photon, incoming proton, and outgoing proton by *q*, *p*, and *p'*.
- Photon virtuality,  $q^2 = -Q^2$ .
- $\gamma^* p$  center-of-mass energy squared,  $W^2 = (p+q)^2$ .

• 
$$x_{\rm Bj} = Q^2/(2p \cdot q) \simeq Q^2/(Q^2 + W^2).$$

• 
$$t = (p - p')^2$$
.

Alternative approach valid at high-energy (small- $x_{\rm Bj}$ ) is the dipole picture:  $\mathcal{A}(\gamma^* p \to V p) \sim (\text{photon wave function}) \cdot (\text{dipole cross section}) \cdot (\text{meson wave function}).$ 

### Exclusive processes at HERA within the dipole picture

Kowalski, Motyka, G.W. [hep-ph/0606272]

Munier, Staśto, Mueller [hep-ph/0102291]

Kowalski, Teaney [hep-ph/0304189]

$$\mathcal{A}(\gamma^* p \to E p) = \int \mathrm{d}^2 \mathbf{r} \, \int_0^1 \frac{\mathrm{d}z}{4\pi} \, \Psi^*(\gamma^* \to q\bar{q}) \, \mathcal{A}(q\bar{q} + p \to q\bar{q} + p) \, \Psi(q\bar{q} \to E),$$

where  $E = \gamma^*$  (inclusive DIS),  $E = \gamma$  (DVCS) or E = V (vector meson production).



- z = photon's light-cone momentum fraction.
- **r** = transverse dipole size.
- $t = (p p')^2 = -\Delta^2$ .
- b = impact parameter: Fourier conjugate variable to Δ.

• Elastic amplitude for  $q\bar{q}$  dipole scattering on the proton:

$$\begin{split} \mathcal{A}(q\bar{q}+p\to q\bar{q}+p) &= \\ &\mathrm{i} \int \mathrm{d}^2 \mathbf{b} \; \mathrm{e}^{-\mathrm{i}\mathbf{b}\cdot\mathbf{\Delta}} \, 2 \left[1-S(x,r,b)\right]. \end{split}$$

• Dipole cross section from optical theorem:

$$\begin{split} \sigma_{q\bar{q}}(x,r) &= \mathrm{Im} \ \mathcal{A}(q\bar{q}+p \to q\bar{q}+p)|_{\Delta=0} \\ \Rightarrow \quad \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^{2}\mathbf{b}} &= 2[1-\mathrm{Re}\,\mathcal{S}(x,r,b)]. \end{split}$$

(Will take S-matrix to be predominantly real.)

# Dipole picture in the non-forward direction

Bartels, Golec-Biernat, Peters (BGBP) [hep-ph/0301192]



- Non-forward photon impact factor calculated in the high-energy limit.
- Transform from momentum space to coordinate space  $(\mathbf{k} \rightarrow \mathbf{r})$ , then to impact parameter space  $(\mathbf{\Delta} \rightarrow \mathbf{b})$ .
- Results obtained in color dipole picture: amplitude factorizes into (wave function).(dipole cross section).(wave function).
- Non-forward wave functions can be written as forward wave functions multiplied by  $\exp[\pm i(1-z)\mathbf{r} \cdot \mathbf{\Delta}/2]$ .
- Effectively, the momentum transfer  $\Delta$  should conjugate to  $\mathbf{b} + (1-z)\mathbf{r}$ , the transverse distance from the centre of the proton to one of the two quarks of the dipole, rather than to  $\mathbf{b}$ .

$$\mathcal{A}_{T,L}^{\gamma^* p \to Ep}(x, Q, \Delta) = \mathrm{i} \int \mathrm{d}^2 \mathbf{r} \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2 \mathbf{b} \; (\Psi_E^* \Psi)_{T,L} \; \mathrm{e}^{-\mathrm{i}[\mathbf{b} - (1-z)\mathbf{r}] \cdot \mathbf{\Delta}} \; \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 \mathbf{b}}$$

### Inclusive DIS in the dipole picture

Total cross section for inclusive DIS is

$$\sigma_{T,L}^{\gamma^* p}(x,Q) = \operatorname{Im} \mathcal{A}_{T,L}^{\gamma^* p \to \gamma^* p}(x,Q,\Delta=0)$$

$$= \sum_{f} \int d^2 \mathbf{r} \int_0^1 \frac{dz}{4\pi} (\Psi^* \Psi)_{T,L}^f \sigma_{q\bar{q}}(x,r),$$

1-2

i.e. depends on dipole cross section integrated over impact parameter  $\mathbf{b}$ . The squared (forward) photon wave functions are calculable in pQCD:

$$\begin{split} (\Psi^*\Psi)_T^f &\equiv \frac{1}{2} \sum_{\substack{h,\bar{h}=\pm\frac{1}{2}\\\lambda=\pm 1}} \Psi^*_{h\bar{h},\lambda} \Psi_{h\bar{h},\lambda} = \frac{2N_c}{\pi} \alpha_{\rm em} e_f^2 \left\{ \left[ z^2 + (1-z)^2 \right] \epsilon^2 K_1^2(\epsilon r) + m_f^2 K_0^2(\epsilon r) \right\}, \\ (\Psi^*\Psi)_L^f &\equiv \sum_{h,\bar{h}=\pm\frac{1}{2}} \Psi^*_{h\bar{h},\lambda=0} \Psi_{h\bar{h},\lambda=0} = \frac{8N_c}{\pi} \alpha_{\rm em} e_f^2 Q^2 z^2 (1-z)^2 K_0^2(\epsilon r), \end{split}$$

where  $\epsilon^2 \equiv z(1-z)Q^2 + m_f^2$  and  $K_{0,1}$  are modified Bessel functions.

## DVCS and exclusive diffractive vector meson production

$$\mathcal{A}_{T,L}^{\gamma^* p \to Ep}(x, Q, \Delta) = \mathrm{i} \int \mathrm{d}^2 \mathbf{r} \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2 \mathbf{b} \, (\Psi_E^* \Psi)_{T,L} \, \mathrm{e}^{-\mathrm{i}[\mathbf{b} - (1-z)\mathbf{r}] \cdot \Delta} \, \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 \mathbf{b}},$$

where  $E = \gamma$  (DVCS) or E = V (vector meson production). The differential cross sections are then obtained from



$$\frac{\mathrm{d}\sigma_{T,L}^{\gamma^* p \to Ep}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^* p \to Ep} \right|^2 [1 + \tan^2(\pi\lambda/2)], \quad \text{with} \quad \lambda \equiv \frac{\partial \ln\left(\mathcal{A}_{T,L}^{\gamma^* p \to Ep}\right)}{\partial \ln(1/x)}$$

For DVCS,

$$(\Psi_{\gamma}^*\Psi)_T^f = \frac{2N_c}{\pi} \alpha_{\rm em} e_f^2 \left\{ \left[ z^2 + (1-z)^2 \right] \epsilon K_1(\epsilon r) m_f K_1(m_f r) + m_f^2 K_0(\epsilon r) K_0(m_f r) \right\}.$$

For vector meson production, however, some modeling of the wave functions,  $\Psi_V$ , is required. Constraints from normalization and experimental decay width. Will consider two alternatives denoted "Gaus-LC" and "boosted Gaussian" (see hep-ph/0606272 for details).

Review of (selected) dipole cross sections

$$\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2\mathbf{b}} = 2[1 - \operatorname{Re} S(x, r, b)] \equiv 2\mathcal{N}(x, r, b),$$

where  $\mathcal{N} \in [0, 1]$  and  $\mathcal{N} = 1$  is the unitarity limit. First dipole models were integrated over **b** assuming proton is a disc in transverse plane:

 $\mathcal{N}(x, r, b) = \mathcal{N}(x, r) \Theta(b_{S} - b) \Rightarrow \sigma_{q\bar{q}}(x, r) = \sigma_{0}\mathcal{N}(x, r) \text{ with } \sigma_{0} = 2\pi b_{S}^{2}.$ Golec-Biernat–Wüsthoff (GBW) [hep-ph/9807513]:

$$\mathcal{N}(x,r) = 1 - e^{-r^2 Q_s^2(x)/4}$$
, where  $Q_s^2(x) = (x_0/x)^{\lambda} \text{ GeV}^2$ .

Decrease of  $\lambda_{\rm tot}$  with decreasing  ${\it Q}^2$  entirely due to saturation effects.

Bartels-Golec-Biernat-Kowalski (BGBK) [hep-ph/0203258]:

 $\mathcal{N}(x,r) = 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2)/(3\sigma_0)\right]$ 

DGLAP evolution of gluon distribution. Charm neglected.

lancu-Itakura-Munier (CGC) [hep-ph/0310338]:

$$\mathcal{N}(x,r) = \begin{cases} \mathcal{N}_0 \left(\frac{rQ_s}{2}\right)^{2\left(\gamma_s + \frac{1}{\kappa\lambda Y} \ln \frac{2}{rQ_s}\right)} & : \quad rQ_s \leq 2, \\ 1 - \mathrm{e}^{-A \ln^2(BrQ_s)} & : \quad rQ_s > 2 \end{cases}$$

where  $Y = \ln(1/x)$ ,  $\gamma_s = 0.63$ ,  $\kappa = 9.9$ . Approximate solution of Balitsky–Kovchegov equation (sums 'fan' diagrams). Charm neglected.

### Impact parameter dependent dipole cross sections

Kowalski-Teaney [hep-ph/0304189] used the Glauber-Mueller dipole cross section:



$$\mathcal{N}(x,r,b) = 1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_5(\mu^2)xg(x,\mu^2)T(b)\right),$$

where  $\mu^2 = 4/r^2 + \mu_0^2$ . Gluon density,  $xg(x, \mu^2)$ , is evolved from a scale  $\mu_0^2$  up to  $\mu^2$  using LO DGLAP evolution without quarks:

$$\frac{\partial xg(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_{\rm S}(\mu^2)}{2\pi} \int_x^1 \mathrm{d}z \ P_{\rm gg}(z) \frac{x}{z} g\left(\frac{x}{z},\mu^2\right).$$

- Initial gluon density taken in the form  $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ .
- Take  $x = x_{\rm Bj}$  for light quarks,  $x = x_{\rm Bj}(1 + 4m_c^2/Q^2)$  for charm quarks, and  $x = x_{\rm Bj}(1 + M_V^2/Q^2)$  for vector meson production. Will use quark masses  $m_{u,d,s} = 0.14$  GeV and  $m_c = 1.4$  GeV.
- Exclusive processes: xg(x, µ<sup>2</sup>) → R<sub>g</sub>xg(x, µ<sup>2</sup>) accounts for skewness of gluon distribution in the limit that x' ≪ x ≪ 1, where [Shuvaev et al., hep-ph/9902410]

$$R_g(\lambda) = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)}, \quad \text{with} \quad \lambda \equiv \frac{\partial \ln\left[xg(x,\mu^2)\right]}{\partial \ln(1/x)}$$

### Impact parameter dependent dipole cross sections

### "b-Sat" model

$$\mathcal{N}(x,r,b) = 1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_5(\mu^2)xg(x,\mu^2)\mathcal{T}(b)\right)$$

Assume T(b) to have a Gaussian form:

$$T(b) = rac{1}{2\pi B_G} \exp\left(-rac{b^2}{2B_G}
ight),$$

where  $B_G = 4 \text{ GeV}^{-2}$  from description of vector meson *t*-distributions.



### "b-CGC" model

$$\mathcal{N}(x,r,b) = \begin{cases} \mathcal{N}_0 \left(\frac{rQ_s}{2}\right)^{2\left(\gamma_s + \frac{1}{r\lambda Y} \ln \frac{2}{rQ_s}\right)} & : & rQ_s \leq 2\\ 1 - e^{-A \ln^2(BrQ_s)} & : & rQ_s > 2 \end{cases}$$

where

$$Q_s \equiv Q_s(x,b) = \left(\frac{x_0}{x}\right)^{\frac{\lambda}{2}} \left[\exp\left(-\frac{b^2}{2B_{\rm CGC}}\right)\right]^{\frac{1}{2\gamma_s}},$$

and  $B_{\rm CGC} = 5.5 \ {\rm GeV^{-2}}$  from description of vector meson *t*-distributions.

## Fits to the total DIS cross section

Determine parameters in dipole cross section from fits to ZEUS  $\sigma_{\text{tot}}^{\gamma^* p}(x_{\text{Bj}}, Q^2)$  data with  $x_{\text{Bj}} \leq 0.01$ :

| Model | $Q^2/{ m GeV^2}$ | $\mu_0^2/\text{GeV}^2$ | Ag            | $\lambda_g$ | $\chi^2$ /d.o.f. |
|-------|------------------|------------------------|---------------|-------------|------------------|
| b-Sat | [0.25,650]       | 1.17                   | 2.55          | 0.020       | 193.0/160 = 1.21 |
| Model | $Q^2/{ m GeV^2}$ | $\mathcal{N}_0$        | $x_0/10^{-4}$ | $\lambda$   | $\chi^2$ /d.o.f. |
|       |                  |                        |               |             |                  |

b-Sat model better than b-CGC model.

| Model | $Q^2/{ m GeV^2}$ | Charm? | $\sigma_0/{ m mb}$ | $x_0/10^{-4}$ | $\lambda$ | $\chi^2$ /d.o.f.        |
|-------|------------------|--------|--------------------|---------------|-----------|-------------------------|
| GBW   | [0.25,45]        | No     | 20.1               | 5.16          | 0.289     | 216.5/130 = 1.67        |
| GBW   | [0.25,45]        | Yes    | 23.9               | 1.11          | 0.287     | 204.9/130 = <b>1.58</b> |
| GBW   | [0.25,650]       | Yes    | 22.5               | 1.69          | 0.317     | 414.4/160 = 2.59        |
| CGC   | [0.25,45]        | No     | 25.8               | 0.263         | 0.252     | 117.2/130 = 0.90        |
| CGC   | [0.25,45]        | Yes    | 35.7               | 0.00270       | 0.177     | 116.8/130 = 0.90        |
| CGC   | [0.25,650]       | Yes    | 34.5               | 0.00485       | 0.188     | 173.7/160 = 1.09        |

GBW model gives a relatively poor description; CGC better. Inclusion of data at larger  $Q^2$  worsens fit: need DGLAP evolution. Presence of charm important.

# The saturation scale $Q_5^2$

Define saturation scale  $Q_S^2 \equiv 2/r_S^2$ , where  $r_S^2$  is the dipole size where

$$\mathcal{N} = 1 - e^{-1/2} \simeq 0.4.$$

(This definition of the saturation scale coincides with  $Q_s^2 = (x_0/x)^{\lambda}$  GeV<sup>2</sup> in the GBW model, but is **not** equal to  $Q_s^2$  in the CGC and b-CGC models.)





- DGLAP evolution, presence of charm, impact parameter dependence: all lower saturation scale.
- Median b ≃ 2.6 GeV<sup>-1</sup> ⇒ saturation effects not important for inclusive DIS in HERA kinematic regime.
- Detailed study of multiple interactions in b-Sat model by H. Kowalski [HERA–LHC proceedings, hep-ph/0601013]. Multiple scattering enhanced for large dipole sizes with b ≈ 0.



### Description of HERA vector meson data in the b-Sat model

- Input gluon density fitted to  $\sigma_{\rm tot}^{\gamma^* p}$  data.
- Parameter  $B_G = 4 \text{ GeV}^{-2}$  giving width of Gaussian T(b) chosen to give best overall description of vector meson *t*-distributions.



### t-slope parameter $B_D$

 $\gamma^* \mathbf{p} \rightarrow \mathbf{J}/\psi \mathbf{p}$ 

10

H1 (40 < W < 160 GeV)</li>
 ZEUS (W = 90 GeV)
 Boosted Gaussian Ψ<sub>V</sub>
 Gaus-LC Ψ<sub>V</sub>

 $Q^2 + M_{J/w}^2$  (GeV<sup>2</sup>)

B<sub>b</sub> (GeV<sup>-2</sup>)

*t*-dependence of exclusive processes at HERA are well described by an exponential form:

$$\frac{\mathrm{d}\sigma^{\gamma^* p \to E p}}{\mathrm{d}t} \propto \mathrm{e}^{-B_D |t|},$$

where  $B_D$  is process dependent, but approaches a universal value at large  $(Q^2 + M_V^2)$ .

B<sub>b</sub> (GeV<sup>-2</sup>

 $\gamma^* \mathbf{p} \rightarrow \phi \mathbf{p}$ 

ZEUS

..... Gaus-LC Ψ,

Boosted Gaussian  $\Psi_{v}$ 

 $10 Q^2 + M_{\perp}^2 (GeV^2)$ 

W = 75 GeV



# Transverse proton shape T(b)

• In limit of small dipole sizes:

$$T(b) = \frac{1}{2\pi B_{\mathcal{G}}} \exp\left(-\frac{b^2}{2B_{\mathcal{G}}}\right) \quad \Rightarrow \quad \frac{\mathrm{d}\sigma^{\gamma^* p \to Ep}}{\mathrm{d}t} \propto \left|\int \mathrm{d}^2 \mathbf{b} \, \mathrm{e}^{-\mathrm{i}\mathbf{b}\cdot\mathbf{\Delta}} \, T(b)\right|^2 \propto \mathrm{e}^{-B_{\mathcal{G}}|t|},$$

so  $B_D = B_G = 4 \text{ GeV}^{-2}$  and  $\sqrt{\langle b^2 \rangle} = \sqrt{2B_G} = 0.56 \text{ fm}.$ 

- cf. proton charge radius 0.870  $\pm$  0.008 fm [PDG].
- However, important modifications to  $B_D$  for finite dipole sizes due to eikonalization and BGBP factor,  $\exp[i(1 z)\mathbf{r} \cdot \mathbf{\Delta}]$ , in amplitude:



# Alternative proton shape: step T(b)

$$T(b) = \frac{1}{\pi b_S^2} \Theta(b_S - b),$$

with 
$$b_S = 4 \text{ GeV}^{-1} \Rightarrow \langle b^2 \rangle = b_S^2/2 = 8 \text{ GeV}^{-2}$$
.



- Assume a step T(b) instead of a Gaussian. Recall that this is implicitly assumed in *b*-independent dipole models (e.g. GBW, CGC).
- t-distribution from step T(b) not supported by J/ψ data.





## W dependence of exclusive diffractive vector meson data



 Good agreement of b-Sat model with HERA data in both shape and normalization.

# 'Soft' vs. 'hard' Pomeron from W dependence

- Fit  $\sigma \propto W^{\delta}$ . In language of Regge theory,  $\delta = 4[\alpha_{\mathbb{P}}(\langle t \rangle) - 1]$ , where  $\alpha_{\mathbb{P}}(\langle t \rangle) = \alpha_{\mathbb{P}}(0) - \alpha'_{\mathbb{P}}/B_D$ , and  $\delta \simeq 0.2$ corresponds to the 'soft' Pomeron.
- Fit  $d\sigma/dt \propto W^{4[\alpha_{\mathbb{P}}(t)-1]}$ , where  $\alpha_{\mathbb{P}}(t) = \alpha_{\mathbb{P}}(0) + \alpha'_{\mathbb{P}} t$ .

|                                      | $\alpha_{\mathbb{P}}(0)$ | $\alpha'_{\mathbb{P}}$ (GeV <sup>-2</sup> ) |
|--------------------------------------|--------------------------|---------------------------------------------|
| H1 $\gamma p \rightarrow J/\psi p$   | $1.22 \pm 0.02$          | $0.16 \pm 0.04$                             |
| ZEUS $\gamma p \rightarrow J/\psi p$ | $1.20\pm0.01$            | $0.12 \pm 0.02$                             |
| H1 $\gamma p \rightarrow \rho p$     | $1.09 \pm 0.01$          | $0.12 \pm 0.05$                             |
| ZEUS $\gamma p \rightarrow \rho p$   | $1.10 \pm 0.02$          | $0.13 \pm 0.04$                             |
| Donnachie–Landshoff                  | 1.08                     | 0.25                                        |

- *ρ* photoproduction is a 'soft' process: α<sub>ℙ</sub>(0) compatible with 'soft' Pomeron value of 1.08.
- α'<sub>P</sub> in γp only half value in pp, due to stronger absorptive effects in pp.
- $J/\psi$  photoproduction is a 'hard' process: larger  $\alpha_{\mathbb{P}}(0)$  but similar  $\alpha'_{\mathbb{P}}$  compared to  $\rho$  photoproduction.







# $Q^2$ dependence of exclusive diffractive vector meson data



• Again, good agreement of b-Sat model with HERA data in both shape and normalization.

## $\sigma_L/\sigma_T$ of exclusive diffractive vector meson data



•  $\sigma_L/\sigma_T$  sensitive to details of the vector meson wave functions.

 $\alpha'_{\mathbb{P}}$  from b-Sat and b-CGC models  $B_D = B_0 + 4\alpha'_{\mathbb{P}}\ln(W/W_0)$ 



- The b-Sat model gives a much better overall description of both the total DIS cross section and exclusive processes than the b-CGC model.
- However, the b-Sat model predicts  $\alpha'_{\mathbb{P}} \approx 0$  due to the assumed factorisation of T(b) from  $xg(x, \mu^2)$ , and the small saturation effects.
- In the b-CGC model, the W (or x) dependence is not factorized from the b dependence, therefore an appreciable α'<sub>P</sub> is achievable.

# Deeply virtual Compton scattering at HERA



- DVCS (γ\*p → γp) is a much cleaner process to describe theoretically than exclusive vector meson production.
- Predicted *t*-slope  $B_D = 5.29 \text{ GeV}^{-2}$  from b-Sat model slightly underestimates experimental value of  $B_D = 6.02 \pm 0.52 \text{ GeV}^{-2}$ .
- Good agreement of b-Sat model with data for Q<sup>2</sup> and W distributions in both shape and normalisation.

# Outline

### 1 Introduction

### 2 Exclusive diffraction in *ep* collisions

Exclusive processes within collinear factorization Exclusive processes within the dipole picture Dipole picture in the non-forward direction Impact parameter dependent dipole cross sections Description of HERA vector meson data Description of HERA DVCS data

### Inclusive diffraction in *ep* collisions Diffractive DIS kinematics and structure functions Collinear factorization in DDIS Perturbative Pomeron contribution to DDIS Analysis of HERA DDIS data Non-linear evolution of inclusive PDFs

4 Diffraction in pp and pp̄ collisions

Factorization breaking in diffractive hadron–hadron collisions Exclusive diffractive Higgs production at LHC

**5** Summary and outlook

## Diffractive DIS kinematics



# Diffractive reduced cross section $\sigma_r^{D(3)}$

• Diffractive cross section (integrated over *t*):

$$\frac{\mathrm{d}^{3}\sigma^{\mathrm{D}}}{\mathrm{d}\mathbf{x}_{\mathbb{P}}\,\mathrm{d}\beta\,\mathrm{d}Q^{2}} = \frac{2\pi\alpha_{\mathrm{em}}^{2}}{\beta\,Q^{4}}\,\left[1+(1-y)^{2}\right]\,\sigma_{r}^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}},\beta,Q^{2}),$$

where  $y = Q^2/(x_{\rm\scriptscriptstyle Bj}s)$ ,  $s = 4 E_e E_p$ , and

$$\sigma_r^{\mathrm{D}(3)} = F_2^{\mathrm{D}(3)} - \frac{y^2}{1 + (1 - y)^2} F_L^{\mathrm{D}(3)} \approx F_2^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}}, \beta, Q^2),$$

for small y or assuming that  ${\it F}_L^{{\rm D}(3)} \ll {\it F}_2^{{\rm D}(3)}$ 

• Measurements of  $\sigma_r^{D(3)} \Rightarrow diffractive$  parton density functions (DPDFs)  $a^{D}(\mathbf{x}_{\mathbb{P}}, z, Q^{2}) = zq^{D}(\mathbf{x}_{\mathbb{P}}, z, Q^{2})$  or  $zg^{D}(\mathbf{x}_{\mathbb{P}}, z, Q^{2})$ , where  $\beta \leq z \leq 1$ , cf.  $x_{Bj} \leq x \leq 1$  in DIS.

### Recent measurements of DDIS using three methods

- Detect leading proton. No proton dissociation background. Can measure t-dependence. Higher x<sub>P</sub> accessible. But low statistics due to poor acceptance. Both Pomeron (P) and secondary Reggeon (R) contributions. [ZEUS LPS: hep-ex/0408009, H1 FPS: hep-ex/0606003]
- 2 Look for Large Rapidity Gap (LRG). (Non-diffractive contribution is exponentially suppressed as a function of the gap size.) Proton dissociation background (H1:  $M_Y < 1.6$  GeV). Used in all final-state DDIS measurements (e.g. dijet and  $D^*$  meson production). Both  $\mathbb{P}$  and  $\mathbb{R}$ contributions. [H1 LRG: hep-ex/0606004]

$$\frac{\mathrm{d}N}{\mathrm{d}\ln M_X^2} = D + \underbrace{c \exp(b \ln M_X^2)}_{\text{non-diffractive}}$$

Proton dissociation background (ZEUS:  $M_Y < 2.3$  GeV). Motivated by Regge theory assuming  $M_X^2 \gg Q^2$ ,  $\alpha_{\mathbb{P}}(0) \approx \alpha_{\mathbb{P}}(\langle t \rangle) \approx 1$ , and neglecting  $\mathbb{P}$ - $\mathbb{R}$  interference. Validity in general? [ZEUS  $M_X$ : hep-ex/0501060]



### Comparison of H1 LRG with other data sets





- H1 FPS and ZEUS LPS scaled to M<sub>Y</sub> < 1.6 GeV by an overall factor 1.23: good agreement with H1 LRG.
- ZEUS M<sub>X</sub> scaled to M<sub>Y</sub> < 1.23 by an overall factor 0.86. Difference expected at large x<sub>P</sub> due to lack of ℝ contribution. However, some difference in Q<sup>2</sup> dependence even at low x<sub>P</sub> ⇒ diffractive gluon density extracted from ZEUS M<sub>X</sub> data roughly half gluon density from H1 LRG data.

# Leading-twist collinear factorization in DDIS

$$F_2^{\mathrm{D}(3)} = \sum_{a=q,g} C_{2,a} \otimes a^{\mathrm{D}} + \text{power-suppressed corrections, (1)}$$

where  $C_{2,a}$  are the **same** coefficient functions as in inclusive DIS. The DPDFs  $a^{D} = zq^{D}$  or  $zg^{D}$  satisfy DGLAP evolution:

$$\frac{\partial a^{\mathrm{D}}}{\partial \ln Q^2} = \sum_{a'=q,g} P_{aa'} \otimes a'^{\mathrm{D}}$$
(2)



"The factorization theorem applies when Q is made large while  $x_{Bj}$ ,  $x_{\mathbb{P}}$ , and t are held fixed." [Collins, hep-ph/9709499]

- Says little about the mechanism for diffraction: information about the diffractive exchange ('Pomeron') needs to be parameterized at an input scale  $Q_0$  and fit to data. Will show later that assuming a perturbative Pomeron contribution, we need to modify both (1) and (2).
- Factorization should also hold for final states (jets etc.) in DDIS, but is broken in hadron-hadron collisions, although hope that same formalism can be applied with extra suppression factor calculable from eikonal models (more later).

LO diffractive dijet photoproduction: resolved photon contribution should be suppressed, but direct photon contribution unsuppressed. Complications at NLO [Klasen–Kramer, hep-ph/0506121].



# H1 2006 extraction of DPDFs [hep-ex/0606004]

• Assume Regge factorization [Ingelman–Schlein,'85]:

$$a^{\mathrm{D}}(x_{\mathbb{P}}, z, Q^2) = f_{\mathbb{P}}(x_{\mathbb{P}}) a^{\mathbb{P}}(z, Q^2)$$
(3)

• Pomeron flux factor from Regge phenomenology:

$$f_{\mathbb{P}}(x_{\mathbb{P}}) = \int_{t_{\rm cut}}^{t_{\rm min}} \mathrm{d}t \, \mathrm{e}^{B_{\mathbb{P}} t} \, x_{\mathbb{P}}^{1-2\alpha_{\mathbb{P}}(t)} \qquad (\alpha_{\mathbb{P}}(t) = \alpha_{\mathbb{P}}(0) + \alpha'_{\mathbb{P}} t)$$

"Regge factorization relates the power of  $x_{\mathbb{P}}$  measured in DDIS to the power of *s* measured in hadron-hadron elastic scattering." [Collins, hep-ph/9709499]

- Fit to H1 FPS data gives  $\alpha_{\mathbb{P}}(t) = 1.11 + 0.06 t$ . Fit to H1 LRG data gives  $\alpha_{\mathbb{P}}(0) = 1.12$  if  $\alpha'_{\mathbb{P}} = 0.06$ , or  $\alpha_{\mathbb{P}}(0) = 1.15$  if  $\alpha'_{\mathbb{P}} = 0.25$ .
- So the Pomeron in DDIS is **not** the 'soft' Pomeron with  $\alpha_{\mathbb{P}}(t) = 1.08 + 0.25 t$ . By Collins' definition, Regge factorization is broken. H1 assume that the  $x_{\mathbb{P}}$  dependence factorizes as eq.(3) regardless, with the fitted  $\alpha_{\mathbb{P}}(0)$  independent of  $\beta$  and  $Q^2$ . However, this  $x_{\mathbb{P}}$  factorization is also broken, see later.

# H1 2006 extraction of DPDFs

hep-ex/0606004

• Pomeron PDFs  $a^{\mathbb{P}}(z, Q^2) = z\Sigma^{\mathbb{P}}(z, Q^2)$  or  $zg^{\mathbb{P}}(z, Q^2)$ are DGLAP-evolved from arbitrary inputs at  $Q_0^2 \simeq 2 \text{ GeV}^2$ :

$$a^{\mathbb{P}}(z, Q_0^2) = A_a z^{B_a} (1-z)^{C_a} e^{-\frac{0.01}{1-z}}$$

- Secondary Reggeon contribution with  $\alpha_{\mathbb{R}}(0) = 0.50$  included using pion PDFs. Normalisation fitted to data.
- Fit to H1 LRG data with M<sub>X</sub> ≥ 2 GeV and Q<sup>2</sup> ≥ 8.5 GeV<sup>2</sup> (190 data points).
- H1 2006 Fit A: fix  $B_g = 0$  $\Rightarrow \chi^2 = 158.$

• H1 2006 Fit B: fix 
$$B_g = 0$$
 and  $C_g = 0$   
 $\Rightarrow \chi^2 = 164$ .



- Also, combined fit of inclusive DDIS data with diffractive dijet data [H1prelim-06-011].
- Constrains gluon density at z = z<sub>ℙ</sub> directly, rather than indirectly from scaling violations.
- Dijet cross sections calculated using NLOJET++ by Z. Nagy.

# H1 2006 extraction of DPDFs



 Dijet z<sub>P</sub> distribution mainly constains z dependence of g<sup>D</sup>.



 Cut of Q<sup>2</sup> ≥ 8.5 GeV<sup>2</sup> needed to achieve stable fit.

# H1 2006 extraction of DPDFs



- Gluon density smaller at high z on inclusion of the dijet data.
- $\chi^2$  for inclusive DDIS data increases from 158 (H1 Fit A) to 169 (H1 combined fit).
- Suggests some tension between inclusive DDIS and dijet data using this approach. Gluon determined directly from dijet data different from gluon determined indirectly from scaling violations of inclusive DDIS data.
- How reliable is the theory used in these fits?

### Alternative approach: two-gluon exchange calculations



Two-gluon exchange calculations are the basis for the color dipole model description of DDIS.

**ZEUS 1994** 



- Right: x<sub>ℙ</sub>F<sub>2</sub><sup>D(3)</sup> for x<sub>ℙ</sub> = 0.0042 as a function of β
   [Golec-Biernat-Wüsthoff, hep-ph/9903358].
  - dotted lines:  $\gamma_T^* \rightarrow q\bar{q}g$ ,
  - dashed lines:  $\gamma_T^* \rightarrow q\bar{q}$ ,
  - dot-dashed lines:  $\gamma_L^* \to q \bar{q}$ ,

important at low, medium, and high  $\beta$  respectively.

•  $\gamma_T^* \rightarrow q\bar{q}g$  and  $\gamma_T^* \rightarrow q\bar{q}$  are partly higher-twist,  $\gamma_L^* \rightarrow q\bar{q}$  is **purely** higher-twist, but H1 DPDFs only include leading-twist contributions.

# Comparison of two approaches

#### 'Regge factorization' approach

- $\mathbb{P}$  is purely non-perturbative, i.e. a Regge pole.
- $Q^2$  dependence given by DGLAP.
- Need to fit  $\beta$  dependence.
- x<sub>ℙ</sub> dependence taken as a power law, with the power either taken from soft hadron data or fitted.
- $x_{\mathbb{P}}$  dependence factorizes.
- Only leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- Only applies to inclusive DDIS.

#### Two-gluon exch. (e.g. dipole model)

- P is purely perturbative, i.e. a gluon ladder.
- $Q^2$  dependence predicted.
- $\beta$  dependence predicted.
- x<sub>ℙ</sub> dependence given by square of skewed gluon density (or dipole cross section).
- $x_{\mathbb{P}}$  dependence doesn't factorize.
- Goes beyond leading-twist.
- Only  $q\bar{q}$  and  $q\bar{q}g$  final states as products of photon dissociation.
- No concept of DPDFs.
- Also explains exclusive processes.

Is inclusive DDIS 'soft' or 'hard'?

|                                     | $B_D$ (GeV <sup>-2</sup> ) | $lpha_{\mathbb{P}}(0)$        | $lpha'_{\mathbb{P}}$ (GeV $^{-2}$ ) |
|-------------------------------------|----------------------------|-------------------------------|-------------------------------------|
| ZEUS LPS                            | $7.9^{+1.0}_{-0.7}$        | $1.16\pm0.3$                  | 0.25 (assumed)                      |
| H1 FPS                              | 6                          | $1.11\substack{+0.05\\-0.03}$ | $0.06^{+0.19}_{-0.06}$              |
| H1 LRG                              | —                          | $1.12^{+0.03}_{-0.01}$        | 0.06 (assumed)                      |
| H1 combined fit                     | —                          | 1.15                          | 0.06 (assumed)                      |
| cf. $\gamma p \rightarrow \rho p$   | $\sim 10$                  | $\sim 1.09$                   | $\sim 0.12$                         |
| cf. $\gamma p \rightarrow J/\psi p$ | $\sim$ 4                   | $\sim 1.20$                   | $\sim 0.12$                         |

### Is inclusive DDIS 'soft' or 'hard'?

- Inclusive DDIS is harder than exclusive ρ photoproduction, but softer than exclusive J/ψ photoproduction (and softer than inclusive DIS at the same Q<sup>2</sup>).
- Above α<sub>P</sub>(0) values are averaged over β and Q<sup>2</sup>. Perturbative Pomeron contribution should break x<sub>P</sub> factorization to some degree.
- Left plot: ZEUS M<sub>X</sub> data show rise of α<sub>P</sub>(0) with Q<sup>2</sup>.
   Middle plot: H1 LRG data show constant α<sub>P</sub>(0) when averaged over β or Q<sup>2</sup>.
   Right plot (G.W.): H1 LRG data show rise of α<sub>P</sub>(0) with Q<sup>2</sup> in some β bins.



# Combination of two approaches

Martin, Ryskin, G.W. [hep-ph/0406224, hep-ph/0504132, hep-ph/0511333]

 In reality, both non-perturbative and perturbative Pomeron contributions to inclusive DDIS. Improve two-gluon exchange calculations by introducing DGLAP evolution in 'Pomeron structure function' allowing universal DPDFs to be extracted.

#### Non-perturbative ${\mathbb P}$ contribution

- P is purely partly non-perturbative, i.e. a Regge pole.
- $Q^2$  dependence given by DGLAP.
- Need to fit  $\beta$  dependence.
- x<sub>P</sub> dependence taken as a power law, with the power either taken from soft hadron data or fitted.
- $x_{\mathbb{P}}$  dependence factorizes.
- Only leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- Only applies to inclusive DDIS.

#### Perturbative $\mathbb{P}$ contribution

- P is purely partly perturbative, i.e. a gluon ladder.
- $Q^2$  dependence predicted.
- $\beta$  dependence predicted.
- x<sub>ℙ</sub> dependence given by square of skewed gluon density (or dipole cross section).
- $x_{\mathbb{P}}$  dependence doesn't factorize.
- Goes beyond leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- Also explains exclusive processes.

### Perturbative Pomeron contribution to DDIS

- Generalize  $\gamma^* \rightarrow q\bar{q}$  and  $\gamma^* \rightarrow q\bar{q}g$  to arbitrary number of parton emissions [Ryskin,'90; Levin–Wüsthoff,'94].
- Work in Leading Logarithmic Approximation (LLA)  $\Rightarrow$  virtualities of *t*-channel partons are strongly ordered:  $\mu_0^2 \ll \ldots \ll \mu^2 \ll \ldots \ll Q^2$ , i.e. pQCD Pomeron is a DGLAP ladder rather than a BFKL ladder.



 New feature: integral over scale μ<sup>2</sup> (starting scale for DGLAP evolution of Pomeron PDFs).

$$\begin{split} F_2^{\mathrm{D}(3)} &= \int_{\mu_0^2}^{Q^2} \frac{\mathrm{d}\mu^2}{\mu^2} f_{\mathbb{P}}(x_{\mathbb{P}};\mu^2) F_2^{\mathbb{P}}(\beta,Q^2;\mu^2) \\ f_{\mathbb{P}}(x_{\mathbb{P}};\mu^2) &= \frac{1}{x_{\mathbb{P}}B_D} \left[ R_g \frac{\alpha_S(\mu^2)}{\mu} x_{\mathbb{P}}g(x_{\mathbb{P}},\mu^2) \right]^2 \\ F_2^{\mathbb{P}}(\beta,Q^2;\mu^2) &= \sum_{a=q,g} C_{2,a} \otimes a^{\mathbb{P}} \end{split}$$

 $(B_D \text{ from } t\text{-integration}, R_g \text{ from skewness})$ 

- Pomeron PDFs  $a^{\mathbb{P}}(z, Q^2; \mu^2)$  DGLAP-evolved from an input scale  $\mu^2$  up to  $Q^2$ .
- For  $\mu^2 < \mu_0^2 \sim 1$  GeV<sup>2</sup>, replace lower parton ladder with usual Regge pole contribution. Take  $\alpha_{\mathbb{P}}(0) \simeq 1.08$  (or fit) and fit Pomeron PDFs DGLAP-evolved from an input scale  $\mu_0^2$ .
- Important: scale that controls  $x_{\mathbb{P}}$  dependence, e.g. effective  $\alpha_{\mathbb{P}}(0)$ , is  $\mu^2$  not  $Q^2$ !

## Gluonic and sea-quark Pomeron



- Pomeron structure function  $F_2^{\mathbb{P}}(\beta, Q^2; \mu^2)$  calculated from quark singlet  $\Sigma^{\mathbb{P}}(z, Q^2; \mu^2)$  and gluon  $g^{\mathbb{P}}(z, Q^2; \mu^2)$  DGLAP-evolved from an input scale  $\mu^2$  up to  $Q^2$ .
- Input Pomeron PDFs Σ<sup>P</sup>(z, μ<sup>2</sup>; μ<sup>2</sup>) and g<sup>P</sup>(z, μ<sup>2</sup>; μ<sup>2</sup>) to DGLAP evolution are Pomeron-to-parton splitting functions.

## LO Pomeron-to-parton splitting functions



0000000

• Notation: ' $\mathbb{P} = G$ ' means gluonic Pomeron, ' $\mathbb{P} = S$ ' means sea-quark Pomeron, ' $\mathbb{P} = GS$ ' means interference between these.

 LO Pomeron-to-parton splitting functions are [hep-ph/0504132]:

$$\begin{split} z\Sigma^{\mathbb{P}=G}(z,\mu^{2};\mu^{2}) &= P_{q,\mathbb{P}=G}(z) = z^{3} (1-z), \\ zg^{\mathbb{P}=G}(z,\mu^{2};\mu^{2}) &= P_{g,\mathbb{P}=G}(z) = \frac{9}{16} (1+z)^{2} (1-z)^{2}, \\ z\Sigma^{\mathbb{P}=S}(z,\mu^{2};\mu^{2}) &= P_{q,\mathbb{P}=S}(z) = \frac{4}{81} z (1-z), \\ zg^{\mathbb{P}=S}(z,\mu^{2};\mu^{2}) &= P_{g,\mathbb{P}=S}(z) = \frac{1}{9} (1-z)^{2}, \\ z\Sigma^{\mathbb{P}=GS}(z,\mu^{2};\mu^{2}) &= P_{q,\mathbb{P}=GS}(z) = \frac{2}{9} z^{2} (1-z), \\ zg^{\mathbb{P}=GS}(z,\mu^{2};\mu^{2}) &= P_{g,\mathbb{P}=GS}(z) = \frac{1}{4} (1+2z) (1-z)^{2} \end{split}$$

Evolve these input Pomeron PDFs from  $\mu^2$  up to  ${\it Q}^2$  using NLO DGLAP evolution.

# Contribution to $F_2^{\mathrm{D}(3)}$ as a function of $\mu^2$

$$F_2^{\mathrm{D}(3)} = \int_{\mu_0^2}^{Q^2} \frac{\mathrm{d}\mu^2}{\mu^2} f_{\mathbb{P}}(x_{\mathbb{P}};\mu^2) F_2^{\mathbb{P}}(\beta,Q^2;\mu^2)$$
$$f_{\mathbb{P}}(x_{\mathbb{P}};\mu^2) = \frac{1}{x_{\mathbb{P}}B_D} \left[ R_g \frac{\alpha_s(\mu^2)}{\mu} x_{\mathbb{P}}g(x_{\mathbb{P}},\mu^2) \right]^2$$

- Naïvely, f<sub>P</sub>(x<sub>P</sub>; μ<sup>2</sup>) ~ 1/μ<sup>2</sup>, so contributions from large μ<sup>2</sup> are strongly suppressed.
- But x<sub>P</sub>g(x<sub>P</sub>, μ<sup>2</sup>) ~ (μ<sup>2</sup>)<sup>γ</sup>, where γ is the anomalous dimension. In BFKL limit γ ≃ 0.5, so f<sub>P</sub>(x<sub>P</sub>; μ<sup>2</sup>) ~ constant.
- HERA domain is in an intermediate region: γ is not small, but is less than 0.5.
- Upper plot:  $\mu^2 x_{\mathbb{P}} f_{\mathbb{P}}(x_{\mathbb{P}}; \mu^2)$  is not flat for small  $x_{\mathbb{P}}$ . Lower plot: integrand as a function of  $\mu^2$  (using MRST2004F3 NLO PDFs)  $\Rightarrow$ large contribution from large  $\mu^2$ .
- Recall that fits using 'Regge factorization' include contributions from  $\mu^2 \leq Q_0^2$  in the input densities, but neglect all contributions from  $\mu^2 > Q_0^2$ .





### Inhomogeneous evolution of DPDFs

$$\begin{split} F_2^{\mathrm{D}(3)} &= \sum_{a=q,g} C_{2,a} \otimes a^{\mathrm{D}}, \\ \text{where } a^{\mathrm{D}}(x_{\mathbb{P}}, z, \mathbf{Q}^2) &= \int_{\mu_0^2}^{\mathbf{Q}^2} \frac{\mathrm{d}\mu^2}{\mu^2} f_{\mathbb{P}}(x_{\mathbb{P}}; \mu^2) \ a^{\mathbb{P}}(z, \mathbf{Q}^2; \mu^2) \\ \Rightarrow \frac{\partial a^{\mathrm{D}}}{\partial \ln \mathbf{Q}^2} &= \underbrace{\sum_{a'=q,g} P_{aa'} \otimes a'^{\mathrm{D}}}_{\mathrm{DGLAP \ term}} + \underbrace{f_{\mathbb{P}}(x_{\mathbb{P}}; \mathbf{Q}^2) P_{a\mathbb{P}}(z)}_{\mathrm{Extra \ inhomogeneous \ term}} \end{split}$$

• Inhomogeneous evolution of DPDFs is not a new idea:

"We introduce a diffractive dissociation structure function and show that it obeys the DGLAP evolution equation, **but**, with an additional inhomogeneous term." [Levin–Wüsthoff, '94]

### Pomeron structure is analogous to photon structure

Photon structure function



Diffractive structure function



## Dijets in diffractive photoproduction



### Analysis of H1 LRG data

**Motivation:** What impact do the perturbative Pomeron terms have on the H1 2006 DPDF analysis?

• Take input quark singlet and gluon densities at  $Q_0^2 = 2 \text{ GeV}^2$  in the form:

$$\begin{split} z \Sigma^{\mathrm{D}}(x_{\mathbb{P}}, z, Q_0^2) &= f_{\mathbb{P}}(x_{\mathbb{P}}) \, A_q \, z^{B_q} (1-z)^{C_q}, \\ z g^{\mathrm{D}}(x_{\mathbb{P}}, z, Q_0^2) &= f_{\mathbb{P}}(x_{\mathbb{P}}) \, A_g \, z^{B_g} (1-z)^{C_g}. \end{split}$$

- f<sub>P</sub>(x<sub>P</sub>) as in the H1 2006 fit with α<sub>P</sub>(0), A<sub>a</sub>, B<sub>a</sub>, and C<sub>a</sub> (a = q, g) as free parameters.
- Work in Fixed Flavor Number Scheme: no heavy quark DPDFs.
- Treatment of secondary Reggeon as in H1 2006 fit, i.e. using pion PDFs, but using GRV NLO instead of Owens LO. (N.B.: No good reason that the  $\mathbb{R}$  PDFs should be same as pion PDFs.)
- Fit H1 LRG data binned at fixed  $x_{\mathbb{P}}$  values with cut  $M_X \ge 2$  GeV. Will study effect of cut  $Q^2 \ge Q_{\min}^2$  on fitted data.
- Statistical and systematic experimental errors added in quadrature.
- Two types of fits:
  - "Regge" = 'Regge factorization' approach (i.e. no  $C_{2,\mathbb{P}}$  or  $P_{a\mathbb{P}}$ )  $\simeq$  H1 2006 Fit A.
  - "pQCD" = 'perturbative QCD' approach with LO  $C_{2,\mathbb{P}}$  and  $P_{a\mathbb{P}}$ .
- Use MRST2004F3 NLO PDFs with  $\Lambda_{\rm QCD}^{(n_f=3)}=407$  MeV.

# Stability with respect to $Q_{\min}^2$ variation

• Stability analysis following MRST [hep-ph/0308087].

| $Q_{\min}^2$ (GeV <sup>2</sup> )       | 3.5 | 5.0   | 6.5           | 8.5  | 12  | 15   |
|----------------------------------------|-----|-------|---------------|------|-----|------|
| Number of data points                  | 266 | 239   | 214           | 190  | 164 | 141  |
| $\chi^2(Q^2 \ge 3.5 \; 	ext{GeV}^2)$   | 272 |       |               |      |     |      |
|                                        | 262 |       |               |      |     |      |
| $\chi^2(Q^2 \geq 5~{ m GeV^2})$        | 233 | 222   |               |      |     |      |
|                                        | 225 | 219   |               |      |     |      |
| $\chi^2(Q^2 \geq 6.5~{ m GeV^2})$      | 208 | 186   | 174           |      |     |      |
|                                        | 205 | 200   | 189           |      |     |      |
| $\chi^2(Q^2\geq 8.5~{ m GeV^2})$       | 178 | 155   | 144           | 142  |     |      |
|                                        | 181 | 174   | 156           | 153  |     |      |
| $\chi^2({\it Q}^2 \geq 12~{ m GeV}^2)$ | 156 | 136   | 124           | 123  | 122 |      |
|                                        | 162 | 155   | 139           | 134  | 134 |      |
| $\chi^2({\it Q}^2 \geq 15~{ m GeV}^2)$ | 133 | 111   | 100           | 98   | 97  | 96   |
|                                        | 138 | 130   | 112           | 106  | 104 | 103  |
| Stability measure $\Delta_i^{i+1}$     | 0.4 | 0 0.4 | <b>45 0</b> . | 07 0 | .03 | 0.04 |
| ,                                      | 0.2 | 0 0.4 | 42 0.         | 14 0 | .03 | 0.06 |

• Both Regge and pQCD fits stable for  $Q_{\min}^2 \gtrsim 6.5 \text{ GeV}^2$ . To compare directly with H1 2006 fits, take  $Q_{\min}^2 = 8.5 \text{ GeV}^2$ .

# DPDFs with $Q_{\min}^2 = 8.5 \text{ GeV}^2$ compared to H1 DPDFs



- Regge fit  $\simeq$  H1 2006 Fit A.
- pQCD fit closer to H1 combined fit than H1 2006 Fit A without including dijet data in fit ⇒ should describe dijet data better than H1 2006 Fit A.
- Suggests tension between inclusive DDIS and diffractive dijet data is alleviated by inclusion of perturbative Pomeron terms.

## Direct Pomeron contribution to dijet production



- Direct Pomeron contribution  $(z_{\mathbb{P}} = 1)$  calculated with ZEUS (prel.) kinematic cuts: 31% of data in largest  $\beta$  bin.
- Exclusive diffractive dijet contribution to inclusive diffractive dijet production is small in the HERA kinematic regime.
- H1 combined fit is to dijet data with z<sub>P</sub> < 0.9 integrated over β. Therefore, safe to neglect direct Pomeron contribution and include only the resolved Pomeron contribution calculated using NLOJET++.
- Searches for exclusive dijets in progress at HERA by H1 and ZEUS.
- Alternative calculations for exclusive dijets using LO collinear factorization by Braun and Ivanov [hep-ph/0505263].

# Predictions for diffractive charm production



- Direct Pomeron contribution, i.e. γ<sup>\*</sup> P → cc̄ (z<sub>P</sub> = 1), is significant at moderate/high β.
- If the direct Pomeron contribution is neglected, the diffractive gluon density would need to be artificially large to fit the charm data.

## Comment on the LRG method



 LRG method: event selection using cut on maximum (pseudo)rapidity η<sub>max</sub> < η<sub>cut</sub> = 3.3 [H1, hep-ex/0606004].

• Kinematics of 
$$\mathbb P$$
 remnant:  
 $E = p_t \cosh \eta_{\max} \simeq (1-z) x_{\mathbb P} E_p$ 

$$\Rightarrow p_t > (1-z) x_{\mathbb{P}} E_p \operatorname{sech} \eta_{\operatorname{cut}}.$$

- Therefore, strong cut on  $\eta_{\max}$  increases relative contribution to DDIS from perturbative Pomeron, i.e. large virtuality  $\mu^2 \simeq p_t^2/(1-z) \gtrsim 1 \text{ GeV}^2$ .
- Originally discussed by J. Ellis and G. Ross [hep-ph/9604360, hep-ph/9812385].
- In recent H1 measurements, effect of cut on η<sub>max</sub> is compensated as part of acceptance corrections using RAPGAP event generator.
  - Pomeron remnant p<sub>t</sub> [H1, hep-ex/0012051] and η<sub>max</sub> distributions are well described by RAPGAP.
  - Good agreement of LRG data with leading-proton data.

Gives confidence that procedure is correct (although uncertainty due to acceptance correction for cut on  $\eta_{\max}$  is dominant uncertainty at high  $x_{\mathbb{P}}$ ).

• Interesting experimental possibility to enhance perturbative Pomeron contribution by event selection with a strong cut on  $\eta_{max}$ .

### Further corrections to DPDF evolution

- NNLO parton-to-parton splitting functions (known).
- NLO Pomeron-to-parton splitting functions (unknown).
- Absorptive corrections. Schematically,

$$\frac{\partial g^{\mathrm{D}}}{\partial \ln Q^2} = P_{gg} \otimes g^{\mathrm{D}} + P_{g\mathbb{P}} \otimes g^2 - 4P_{g\mathbb{P}} \otimes gg^{\mathrm{D}} + \dots$$



Possible that further corrections will stabilize the results of the fit with respect to the  $Q^2_{\rm min}$  cut.

# Non-linear evolution of inclusive PDFs



• Regge theory expectation for small-x PDFs at low scales  $Q \lesssim Q_0 \sim 1~{\rm GeV}$  is that:

$$xg \sim x^{-\lambda_g}$$
 and  $xS \sim x^{-\lambda_S}$ ,

with  $\lambda_g = \lambda_S = \lambda_{\text{soft}} \simeq 0.08$ , then at higher  $Q^2 \gtrsim 1$  GeV, QCD evolution should take over, increasing  $\lambda_g$  and  $\lambda_S$ .

• Current PDF sets exhibit a very different behavior.

Gribov-Levin-Ryskin ('83) and Mueller-Qiu ('86) (GLRMQ):

$$\frac{\partial xg(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_S}{2\pi} \sum_{a'=q,g} P_{ga'} \otimes a' - \frac{9}{2} \frac{\alpha_S^2(Q^2)}{R^2 Q^2} \int_x^1 \frac{\mathrm{d}x'}{x'} \left[ x'g(x',Q^2) \right]^2$$

(BFKL-based refinements: Balitsky–Kovchegov and JIMWLK. See review by Jalilian-Marian and Kovchegov [hep-ph/0505052].)

 Are the input MRST/CTEQ gluon densities at small-x and low Q<sup>2</sup> forced to be artificially small in order to mimic the neglected screening corrections?



# Non-linear evolution of inclusive PDFs

Martin, Ryskin, G.W. [hep-ph/0406225, hep-ph/0508093]:



# Outline

### 1 Introduction

### 2 Exclusive diffraction in *ep* collisions

Exclusive processes within collinear factorization Exclusive processes within the dipole picture Dipole picture in the non-forward direction Impact parameter dependent dipole cross sections Description of HERA vector meson data Description of HERA DVCS data

### **3** Inclusive diffraction in *ep* collisions

Diffractive DIS kinematics and structure functions Collinear factorization in DDIS Perturbative Pomeron contribution to DDIS Analysis of HERA DDIS data Non-linear evolution of inclusive PDFs

### **4** Diffraction in pp and $p\bar{p}$ collisions

Factorization breaking in diffractive hadron-hadron collisions Exclusive diffractive Higgs production at LHC

**5** Summary and outlook

# Factorization breaking in diffractive pp and $p\bar{p}$ collisions

- Factorization is broken in diffractive hadron-hadron collisions by (soft) interaction between spectator partons of the colliding hadrons.
- Can be accounted for with suppression factor S<sup>2</sup> calculable from eikonal models with parameters fitted to soft hadron-hadron data [review by Gotsman *et al.*, hep-ph/0511060].
- Consider diffractive dijet production at Tevatron. Diffractive structure function of the antiproton:

$$ilde{F}^{\mathrm{D}}_{JJ}(eta) = rac{1}{\xi_{\mathrm{max}} - \xi_{\mathrm{min}}} \int_{\xi_{\mathrm{min}}}^{\xi_{\mathrm{max}}} \mathrm{d}\xi \left[ eta g^{\mathrm{D}}(\xi,eta,Q^2) + rac{4}{9}eta \Sigma^{\mathrm{D}}(\xi,eta,Q^2) 
ight],$$

measured by CDF [PRL 84, 5043 (2000)].

 Prediction using DPDFs from HERA agree with *F*<sup>D</sup><sub>JJ</sub> data when S<sup>2</sup> factor included [Kaidalov *et al.*, hep-ph/0105145].



# Exclusive diffractive Higgs production at LHC

Khoze, Martin, Ryskin (KMR) (+ Kaidalov, Stirling) ['97–]. Review by J. Forshaw [hep-ph/0508274].



$$\sigma(pp 
ightarrow p + H + p) \sim 3 \, {
m fb}$$
  
 $\sim 10^{-4} \, \sigma(pp 
ightarrow HX),$ 

for a Standard Model Higgs with  $M_H \simeq 120$  GeV.

Advantages:

- 1 Tag outgoing protons: measure Higgs mass with resolution  $\sim 1~{
  m GeV}.$
- 2 Investigate quantum numbers of produced states.
- 3 Clean environment with low background.
- @ Regions of SUSY parameter space where exclusive Higgs production enhanced compared to inclusive Higgs production.

 $\rm FP420$  proposal to add forward proton tagging detectors 420 m from the interaction points of the ATLAS/CMS experiments [see http://www.fp420.com/].

# Main ingredients of KMR approach

$$\sigma(pp \to p + H + p) \sim \frac{S^2}{B_D^2} \left| N \int \frac{\mathrm{d}Q_T^2}{Q_T^4} f_g(x_1, x_1', Q_T^2, \mu^2) f_g(x_2, x_2', Q_T^2, \mu^2) \right|^2$$

where  $S^2\simeq$  0.026,  $B_D\simeq$  4 GeV  $^{-2}$ ,  $\mu\simeq M_H/2$ , and

$$f_g(x, x', Q_T^2, \mu^2) = R_g \frac{\partial}{\partial \ln Q_T^2} \left[ \sqrt{T_g(Q_T^2, \mu^2)} xg(x, Q_T^2) \right],$$

with  $R_g$  = skewness. The Sudakov factor,  $T_g(Q_T^2, \mu^2)$ , suppresses the infrared  $Q_T$  region:



- Plot by J. Forshaw [hep-ph/0508274].
- Integrand dominated by  $Q_T \sim 1-2$ GeV  $\Rightarrow$  pQCD applicable (just!).
- Calculations implemented in ExHuME Monte Carlo program [hep-ph/0502077].

# Check KMR approach at HERA and Tevatron

- Skewed unintegrated gluon densities, f<sub>g</sub>(x, x', Q<sup>2</sup><sub>T</sub>, μ<sup>2</sup>), give reasonable description of exclusive diffractive vector meson production at HERA [Martin-Ryskin-Teubner, hep-ph/9912551].
- Predictions for the suppression factor  $S^2$  can be tested at Tevatron, and for the resolved photon contribution to photoproduction at HERA (in both diffraction and with leading neutrons).
- Searches in progress at Tevatron for exclusive dijet  $(p\bar{p} \rightarrow p + jj + \bar{p})$  and diphoton  $(p\bar{p} \rightarrow p + \gamma\gamma + \bar{p})$  production  $[\rightarrow \text{talk by C. Mesropian}].$

# Hard rescattering corrections to exclusive Higgs production

Bartels–Bondarenko–Kutak–Motyka [hep-ph/0601128] find that hard rescattering corrections give large negative contribution, using pQCD with infrared behavior stabilized by saturation scale:



Rebuttal by Khoze–Martin–Ryskin [hep-ph/0602247], who argue that hard rescattering corrections must be small because:

- Similar effect not observed for leading neutron production at HERA.
- Rapidity interval at LHC not large enough for hard rescattering corrections.
- LO pQCD approach invalid: no evidence in data that saturation scale is large enough to provide infrared cutoff, gluon density not constrained at very small x.
- If first hard rescattering corrections important, would need to consider additional corrections and would need to recalculate  $S^2$ .

Better theoretical understanding needed to clarify this issue.

# Outline

### 1 Introduction

### 2 Exclusive diffraction in *ep* collisions

Exclusive processes within collinear factorization Exclusive processes within the dipole picture Dipole picture in the non-forward direction Impact parameter dependent dipole cross sections Description of HERA vector meson data Description of HERA DVCS data

### **3** Inclusive diffraction in *ep* collisions

Diffractive DIS kinematics and structure functions Collinear factorization in DDIS Perturbative Pomeron contribution to DDIS Analysis of HERA DDIS data Non-linear evolution of inclusive PDFs

### 4 Diffraction in pp and pp̄ collisions

Factorization breaking in diffractive hadron–hadron collisions Exclusive diffractive Higgs production at LHC

### **5** Summary and outlook

# Summary

### Exclusive diffraction in ep collisions

- Exclusive diffractive processes are well described within the **dipole picture** using an impact parameter dependent (Glauber–Mueller) dipole cross section.
- *t*-distributions show that the proton shape in the transverse plane takes a **universal Gaussian form** in the limit of small dipole sizes, with  $\sqrt{\langle b^2 \rangle} = 0.56$  fm (cf. the proton charge radius of 0.87 fm).

### Inclusive diffraction in ep collisions

- Perturbative Pomeron contribution leads to an **inhomogeneous** evolution equation for the diffractive PDFs, analogous to the evolution equation for the photon PDFs.
- Evidence of instability in the fits for  $Q^2 \lesssim 6.5 \text{ GeV}^2$ : further theoretical corrections such as NLO Pomeron-to-parton splitting functions or absorptive corrections may help.

### Diffraction in pp and $p\bar{p}$ collisions

- Factorization broken in hadron-hadron collisions, but can be accounted for with an extra suppression factor calculable from eikonal models of soft interactions.
- Case for installing proton taggers at the LHC to detect exclusive diffractive Higgs production. Calculations can be checked at HERA and Tevatron.

# Outlook

### Diffraction in ep collisions at a future EIC

- Cleanest measurements of diffraction by tagging outgoing proton. Requires proper integration of forward detectors.
- Measure *t*-distributions of exclusive vector meson production and DVCS to high accuracy to give information about the proton shape in the transverse plane and the small-*x* gluon density.
- Precise measurements of  $F_L^{D(3)}$  could clarify role of higher-twist contributions in diffractive DIS. (First measurements expected from HERA low-energy running in 2007.)
- Search for exclusive diffractive dijet production.
- Strong rapidity cut requirement could enhance perturbative Pomeron contribution. Interesting to measure transverse momentum of Pomeron remnant.
- Diffractive DIS offers a more direct way to study perturbative multi-ladder diagrams than inclusive DIS.