Theory of diffractive structure functions

Graeme Watt

DESY / UCL

DIS 2006, Tsukuba, Japan 20th April 2006

In collaboration with A.D. Martin and M.G. Ryskin (see hep-ph/0511333, and references therein)

Outline

- Diffractive Deep-Inelastic Scattering (DDIS) is characterised by a Large Rapidity Gap (LRG) due to 'Pomeron' (vacuum quantum number) exchange.
- How do we extract Diffractive Parton Density Functions (DPDFs) from DDIS data?
(1) Introduction
(2) 'Regge factorisation' approach to DPDFs
(3) How to reconcile two-gluon exchange with DPDFs?
(4) Pomeron structure is analogous to photon structure
(5) Description of DDIS data
(6) Comments on the experimental methods
(7) Conclusions

Diffractive DIS kinematics

- $q^{2} \equiv-Q^{2}$
- $W^{2} \equiv(q+p)^{2}=-Q^{2}+2 p \cdot q$
$\Rightarrow \quad x_{B} \equiv \frac{Q^{2}}{2 p \cdot q}=\frac{Q^{2}}{Q^{2}+W^{2}}$ (fraction of proton's momentum carried by struck quark)
- $t \equiv\left(p-p^{\prime}\right)^{2} \approx 0,\left(p-p^{\prime}\right) \approx x_{\mathbb{P}} p$
- $M_{X}^{2} \equiv\left(q+p-p^{\prime}\right)^{2}=-Q^{2}+x_{\mathbb{P}}\left(Q^{2}+W^{2}\right)$
$\Rightarrow \quad x_{\mathbb{P}}=\frac{Q^{2}+M_{X}^{2}}{Q^{2}+W^{2}}$
(fraction of proton's momentum carried by Pomeron)
- $\beta \equiv \frac{x_{B}}{X_{\mathbb{P}}}=\frac{Q^{2}}{Q^{2}+M_{X}^{2}}$ (fraction of Pomeron's momentum carried by struck quark)

Diffractive structure function $F_{2}^{\mathrm{D}(3)}$

- Diffractive cross section (integrated over t):

$$
\frac{\mathrm{d}^{3} \sigma^{\mathrm{D}}}{\mathrm{~d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{\beta Q^{4}}\left[1+(1-y)^{2}\right] \sigma_{r}^{\mathrm{D}(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)
$$

where $y=Q^{2} /\left(x_{B} s\right), s=4 E_{e} E_{p}$, and

$$
\sigma_{r}^{\mathrm{D}(3)}=F_{2}^{\mathrm{D}(3)}-\frac{y^{2}}{1+(1-y)^{2}} F_{L}^{\mathrm{D}(3)} \approx F_{2}^{\mathrm{D}(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)
$$

for small y or assuming that $F_{L}^{D(3)} \ll F_{2}^{D(3)}$

- Measurements of $\sigma_{r}^{\mathrm{D}(3)} \Rightarrow$ diffractive parton distribution functions (DPDFs)

$$
a^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right)=z q^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right) \text { or } z g^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right)
$$

where $\beta \leq z \leq 1$, cf. $x_{B} \leq x \leq 1$ in DIS.

Recent measurements of DDIS using three methods

(1) Detect leading proton. No proton dissociation background, but low statistics. Both Pomeron (\mathbb{P}) and secondary Reggeon (\mathbb{R}) contributions. [ZEUS: Eur. Phys. J. C 38 (2004) 43, H1prelim-01-112]
(2) Look for Large Rapidity Gap (LRG). (Non-diffractive contribution is exponentially suppressed as a function of the gap size.) Proton dissociation background ($M_{Y}<1.6 \mathrm{GeV}$). Both \mathbb{P} and \mathbb{R} contributions. [H1prelim-02-012, H1prelim-02-112, H1prelim-03-011]
(3) Use " M_{x} method". Subtract non-diffractive contribution in each (W, Q^{2}) bin by fitting (in a limited range of $\ln M_{x}^{2}$):

$$
\frac{\mathrm{d} N}{\mathrm{~d} \ln M_{X}^{2}}=D+\underbrace{c \exp \left(b \ln M_{X}^{2}\right)}_{\text {non-diffractive }}
$$

Proton dissociation background ($M_{Y}<2.3 \mathrm{GeV}$). Only \mathbb{P} contribution since \mathbb{R} contribution is subtracted as part of non-diffractive contribution. Comment on this method later. [ZEUS: Nucl. Phys. B 713 (2005) 3]

Imminent release of new H 1 leading-proton and LRG data: see talk by
P. Newman. New ZEUS leading-proton, LRG and M_{X} data in progress.

Collinear factorisation in DDIS

$$
\begin{equation*}
F_{2}^{\mathrm{D}(3)}=\sum_{a=q, g} C_{2, a} \otimes a^{\mathrm{D}}+\mathcal{O}(1 / Q), \tag{1}
\end{equation*}
$$

where $C_{2, a}$ are the same coefficient functions as in inclusive DIS and where the DPDFs $a^{\mathrm{D}}=z q^{\mathrm{D}}$ or $z g^{\mathrm{D}}$ satisfy DGLAP evolution in Q^{2} :

$$
\begin{equation*}
\frac{\partial a^{\mathrm{D}}}{\partial \ln Q^{2}}=\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime \mathrm{D}} \tag{2}
\end{equation*}
$$

"The factorisation theorem applies when Q is made large while $x_{B}, x_{\mathbb{P}}$, and t are held fixed." [Collins,'98]

- Says nothing about the mechanism for diffraction: information about the diffractive exchange ('Pomeron') needs to be parameterised at an input scale Q_{0} and fit to data. Will show later that assuming a 'QCD Pomeron' we need to modify both (1) and (2).
- Factorisation should also hold for final states (jets etc.) in DDIS, but is broken in hadron-hadron collisions, although hope that same formalism can be applied with extra suppression factor calculable from eikonal models.
- LO diffractive dijet photoproduction: resolved photon contribution should be suppressed, but direct photon
 contribution unsuppressed. Complications at NLO [Klasen-Kramer,'05].

H1 2002 (prel.) extraction of DPDFs (ZEUS similar)

- Assume Regge factorisation [Ingelman-Schlein,'85]:

$$
a^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right)=f_{\mathbb{P}}\left(x_{\mathbb{P}}\right) a^{\mathbb{P}}\left(z, Q^{2}\right)
$$

- Pomeron flux factor from Regge phenomenology:

$$
f_{\mathbb{P}}\left(x_{\mathbb{P}}\right)=\int_{t_{\text {cut }}}^{t_{\text {min }}} \mathrm{d} t \mathrm{e}^{B_{\mathbb{P}} t} x_{\mathbb{P}}^{1-2 \alpha_{\mathbb{P}}(t)} \quad\left(\alpha_{\mathbb{P}}(t)=\alpha_{\mathbb{P}}(0)+\alpha_{\mathbb{P}}^{\prime} t\right)
$$

"Regge factorisation relates the power of $x_{\mathbb{P}}$ measured in DDIS to the power of s measured in hadron-hadron elastic scattering." [Collins,'98]

- Fit to H1 LRG (prel.) data gives $\alpha_{\mathbb{P}}(0)=1.17>1.08$, the value of the 'soft Pomeron' [Donnachie-Landshoff,'92]. By Collins' definition, Regge factorisation is broken. H1/ZEUS meaning of 'Regge factorisation' is that the $x_{\mathbb{P}}$ dependence factorises as a power law, with the power independent of β and Q^{2} (also broken, see later).
- Pomeron PDFs $\mathbb{a}^{\mathbb{P}}\left(z, Q^{2}\right)=z \Sigma^{\mathbb{P}}\left(z, Q^{2}\right)$ or $z g^{\mathbb{P}}\left(z, Q^{2}\right)$ are DGLAP-evolved from arbitrary inputs at $Q_{0}^{2}=3 \mathrm{GeV}^{2}$:

$$
a^{\mathbb{P}}\left(z, Q_{0}^{2}\right)=\left[A_{a}+B_{a}(2 z-1)+C_{a}\left(2(2 z-1)^{2}-1\right)\right]^{2} \exp (-0.01 /(1-z))
$$

H1 LRG (prel.) vs. ZEUS M_{X} DPDFs

NLO QCD fits to H1 and ZEUS data

Fits and plot by F.-P. Schilling (H1). Presented at DIS 2005.

- Same procedure used to fit H1 LRG (prel.) and ZEUS
M_{X} data. (ZEUS M_{X} data scaled by a constant factor to account for different amount of proton dissociation.)
- Gluon from ZEUS M_{X} fit ~ factor two smaller than gluon from H1 LRG data, due to different Q^{2} dependence of the data sets. Predictions from H1 2002 fit give good agreement with (LRG) DDIS dijet and D^{*} production data.
- N.B. 2-loop α_{S} fixed by $\Lambda_{\mathrm{QCD}}=200 \mathrm{MeV}$ for 4 flavours. Gives α_{S} values much smaller than world average $\Rightarrow \mathrm{H} 12002$ gluon artificially enhanced. Will be corrected for H 1 publication.

H1 LRG (prel.) vs. ZEUS M_{X} vs. ZEUS LPS DPDFs

Diffractive PDFs ($\mathrm{x}_{\mathrm{IP}}=\mathbf{0 . 0 1}$)

- No correction made for different amounts of proton dissociation.
- GLP = Groys-Levy-Proskuryakov (ZEUS) fit to ZEUS M_{X} data, gives much too low prediction for ZEUS (LRG) DDIS dijets.
- ZEUS LPS fit describes dijets well, but:
"The shape of the fitted PDFs changes
significantly depending on the functional
form of the initial parameterisation, a consequence of the relatively large
statistical uncertainties of the present
sample. Therefore, these data cannot
constrain the shapes of the PDFs."
[ZEUS: Eur. Phys. J. C 38 (2004) 43]
- See also talk by A. Bonato.

Q^{2} dependence of effective Pomeron intercept

H1 Diffractive Effective $\alpha_{1 P}(0)$

ZEUS

- Recall that 'Regge factorisation' fits assume that $\alpha_{\mathbb{P}}(0)$, which controls the $x_{\mathbb{P}}$ dependence, is independent of β and Q^{2}.
- $\alpha_{\mathbb{P}}(0)$ clearly rises with Q^{2}, but is smaller than in inclusive DIS, indicating that the $x_{\mathbb{P}}$ dependence is controlled by some scale $\mu^{2}<Q^{2}$.
- $\alpha_{\mathbb{P}}(0)>1.08$ [Donnachie-Landshoff,'92] indicating that the Pomeron in DDIS is not the 'soft' Pomeron exchanged in hadron-hadron collisions \Rightarrow should use pQCD instead of Regge phenomenology. In pQCD, Pomeron exchange can be described by two-gluon exchange.

How to reconcile two-gluon exchange with DPDFs?

Two-gluon exchange
calculations are the basis
for the colour dipole
model description of
DDIS.

ZEUS 1994

- Right: $x_{\mathbb{P}} F_{2}^{\mathrm{D}(3)}$ for $x_{\mathbb{P}}=0.0042$ as a function of β
[Golec-Biernat-Wüsthoff,'99].
- dotted lines: $\gamma_{T}^{*} \rightarrow q \bar{q} g$,
- dashed lines: $\gamma_{T}^{*} \rightarrow q \bar{q}$,
- dot-dashed lines: $\gamma_{L}^{*} \rightarrow q \bar{q}$,
important at low, medium, and high β respectively.
- $\gamma_{L}^{*} \rightarrow q \bar{q}$ is higher-twist, but DPDFs only include leading-twist contributions, therefore H1/ZEUS DPDFs are artificially large at high z.

Comparison of two approaches

'Regge factorisation' approach

- \mathbb{P} is purely non-perturbative, i.e. a Regge pole.
- Q^{2} dependence given by DGLAP.
- Need to fit β dependence.
- $x_{\mathbb{P}}$ dependence taken as a power law, with the power either taken from soft hadron data or fitted.
- Only leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- $x_{\mathbb{P}}$ dependence factorises.
- Only applies to inclusive DDIS.

Two-gluon exch. (e.g. dipole model)

- \mathbb{P} is purely perturbative, i.e. a gluon ladder.
- Q^{2} dependence predicted.
- β dependence predicted.
- $x_{\mathbb{P}}$ dependence given by square of skewed gluon distribution (or dipole cross section).
- Goes beyond leading-twist.
- Only $q \bar{q}$ and $q \bar{q} g$ final states as products of photon dissociation.
- No concept of DPDFs.
- $x_{\mathbb{P}}$ dependence doesn't factorise.
- Also explains exclusive processes.
- In reality, both non-perturbative and perturbative Pomeron contributions to inclusive DDIS. Want to combine advantages of both approaches while eliminating the limitations. Improve two-gluon exchange calculations by introducing DGLAP evolution in 'Pomeron structure function' allowing universal DPDFs to be extracted.

Combination of two approaches

- Inclusive DDIS consists of both non-perturbative and perturbative Pomeron contributions.

Non-perturbative \mathbb{P} contribution

- \mathbb{P} is purely partly non-perturbative, i.e. a Regge pole.
- Q^{2} dependence given by DGLAP.
- Need to fit β dependence.
- $x_{\mathbb{P}}$ dependence taken as a power law, with the power either taken from soft hadron data or fitted.
- Only leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- $x_{\mathbb{P}}$ dependence factorises.
- Only applies to inclusive DDIS.

Perturbative \mathbb{P} contribution

- \mathbb{P} is purely partly perturbative, i.e. a gluon ladder.
- Q^{2} dependence predicted.
- β dependence predicted.
- $x_{\mathbb{P}}$ dependence given by square of skewed gluon distribution for dipole eross section).
- Goes beyond leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- $x_{\mathbb{P}}$ dependence doesn't factorise.
- Also explains exclusive processes.

The QCD Pomeron is a parton ladder

- Generalise $\gamma^{*} \rightarrow q \bar{q}$ and $\gamma^{*} \rightarrow q \bar{q} g$ to arbitrary number of parton emissions [Ryskin,'90; Levin-Wüsthoff,'94].
- Work in Leading Logarithmic Approximation (LLA) \Rightarrow virtualities of t-channel partons are strongly ordered: $\mu_{0}^{2} \ll \ldots \ll \mu^{2} \ll \ldots \ll Q^{2}$.
- New feature: integral over scale μ^{2} (starting scale for DGLAP evolution of Pomeron PDFs).

$$
\begin{aligned}
F_{2}^{\mathrm{D}(3)} & =\int_{\mu_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) F_{2}^{\mathbb{P}}\left(\beta, Q^{2} ; \mu^{2}\right) \\
f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) & =\frac{1}{x_{\mathbb{P}} B_{D}}\left[R_{g} \frac{\alpha_{S}\left(\mu^{2}\right)}{\mu} x_{\mathbb{P}} g\left(x_{\mathbb{P}}, \mu^{2}\right)\right]^{2} \\
F_{2}^{\mathbb{P}}\left(\beta, Q^{2} ; \mu^{2}\right) & =\sum_{a=q, g} C_{2, a} \otimes a^{\mathbb{P}}
\end{aligned}
$$

B_{D} from t-integration, R_{g} from skewedness [Shuvaev et al.,'99]

- Pomeron PDFs $a^{\mathbb{P}}\left(z, Q^{2} ; \mu^{2}\right)$ DGLAP-evolved from an input scale μ^{2} up to Q^{2}.
- For $\mu^{2}<\mu_{0}^{2} \sim 1 \mathrm{GeV}^{2}$, replace lower parton ladder with usual Regge pole contribution. Take $\alpha_{\mathbb{P}}(0) \simeq 1.08$ (or fit) and fit Pomeron PDFs DGLAP-evolved from an input scale μ_{0}^{2}.

Gluonic and sea-quark Pomeron

- At low scales, sea-quark density of the proton dominates over gluon density at small $x \Rightarrow$ need to account for sea-quark density in perturbative Pomeron fux factor.

- Pomeron structure function $F_{2}^{\mathbb{P}}\left(\beta, Q^{2} ; \mu^{2}\right)$ calculated from quark singlet $\Sigma^{\mathbb{P}}\left(z, Q^{2} ; \mu^{2}\right)$ and gluon $g^{\mathbb{P}}\left(z, Q^{2} ; \mu^{2}\right)$ DGLAP-evolved from an input scale μ^{2} up to Q^{2}.
- Input Pomeron PDFs $\Sigma^{\mathbb{P}}\left(z, \mu^{2} ; \mu^{2}\right)$ and $g^{\mathbb{P}}\left(z, \mu^{2} ; \mu^{2}\right)$ are Pomeron-to-parton splitting functions.

LO Pomeron-to-parton splitting functions

- LO Pomeron-to-parton splitting functions calculated in Eur. Phys. J. C 44 (2005) 69.
- Notation: ${ }^{~} \mathbb{P}=G$ ' means gluonic Pomeron, ${ }^{‘} \mathbb{P}=S^{\prime}$ means sea-quark Pomeron, ' $\mathbb{P}=G S$ ' means interference between these.

$$
\begin{aligned}
& z \Sigma^{\mathbb{P}=G}\left(z, \mu^{2} ; \mu^{2}\right)=P_{q, \mathbb{P}=G}(z)=z^{3}(1-z), \\
& z g^{\mathbb{P}=G}\left(z, \mu^{2} ; \mu^{2}\right)=P_{g, \mathbb{P}=G}(z)=\frac{9}{16}(1+z)^{2}(1-z)^{2}, \\
& z \Sigma^{\mathbb{P}=S}\left(z, \mu^{2} ; \mu^{2}\right)=P_{q, \mathbb{P}=S}(z)=\frac{4}{81} z(1-z), \\
& z g^{\mathbb{P}=S}\left(z, \mu^{2} ; \mu^{2}\right)=P_{g, \mathbb{P}=S}(z)=\frac{1}{9}(1-z)^{2}, \\
& z \Sigma^{\mathbb{P}=G S}\left(z, \mu^{2} ; \mu^{2}\right)=P_{q, \mathbb{P}=G S}(z)=\frac{2}{9} z^{2}(1-z), \\
& z g^{\mathbb{P}=G S}\left(z, \mu^{2} ; \mu^{2}\right)=P_{g, \mathbb{P}=G S}(z)=\frac{1}{4}(1+2 z)(1-z)^{2}
\end{aligned}
$$

Evolve these input Pomeron PDFs from μ^{2} up to Q^{2} using NLO DGLAP evolution.

Contribution to $F_{2}^{\mathrm{D}(3)}$ as a function of μ^{2}

$$
\begin{aligned}
F_{2}^{\mathrm{D}(3)} & =\int_{\mu_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) F_{2}^{\mathbb{P}}\left(\beta, Q^{2} ; \mu^{2}\right) \\
f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) & =\frac{1}{x_{\mathbb{P}} B_{D}}\left[R_{g} \frac{\alpha_{S}\left(\mu^{2}\right)}{\mu} x_{\mathbb{P}} g\left(x_{\mathbb{P}}, \mu^{2}\right)\right]^{2}
\end{aligned}
$$

- Naïvely, $f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) \sim 1 / \mu^{2}$, so contributions from large μ^{2} are strongly suppressed.
- But $x_{\mathbb{P}} g\left(x_{\mathbb{P}}, \mu^{2}\right) \sim\left(\mu^{2}\right)^{\gamma}$, where γ is the anomalous dimension. In BFKL limit $\gamma \simeq 0.5$, so $f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) \sim$ constant.
- HERA domain is in an intermediate region: γ is not small, but is less than 0.5 .
- Upper plot: $\mu^{2} x_{\mathbb{P}} f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right)$ is not flat for small $x_{\mathbb{P}}$. Lower plot: integrand as a function of μ^{2} (using MRST2001 NLO PDFs) \Rightarrow large contribution from large μ^{2}.
- Recall that fits using 'Regge factorisation' include contributions from $\mu^{2} \leq Q_{0}^{2}$ in the

 input distributions, but neglect all contributions from $\mu^{2}>Q_{0}^{2}$, where typically $Q_{0}^{2} \approx 3 \mathrm{GeV}^{2}$.

Inhomogeneous evolution of DPDFs

$$
\begin{gathered}
F_{2}^{\mathrm{D}(3)}=\sum_{a=q, g} C_{2, a} \otimes a^{\mathrm{D}}, \\
\text { where } a^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right)=\int_{\mu_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) a^{\mathbb{P}}\left(z, Q^{2} ; \mu^{2}\right) \\
\Longrightarrow \frac{\partial a^{\mathrm{D}}}{\partial \ln Q^{2}}=\int_{\mu_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) \frac{\partial a^{\mathbb{P}}}{\partial \ln Q^{2}}+\left.f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) a^{\mathbb{P}}\left(z, Q^{2} ; \mu^{2}\right)\right|_{\mu^{2}=Q^{2}} \\
=\int_{\mu_{0}^{2}}^{Q^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} f_{\mathbb{P}}\left(x_{\mathbb{P}} ; \mu^{2}\right) \sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\neq \mathbb{P}}+f_{\mathbb{P}}\left(x_{\mathbb{P}} ; Q^{2}\right) a^{\mathbb{P}}\left(z, Q^{2} ; Q^{2}\right) \\
=\underbrace{\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime D}}_{\text {DGLAP term }}+\underbrace{f_{\mathbb{P}}\left(x_{\mathbb{P}} ; Q^{2}\right) P_{a \mathbb{P}}(z)}_{\text {Extra inhomogeneous term }}
\end{gathered}
$$

Inhomogeneous evolution of DPDFs is not a new idea:
"We introduce a diffractive dissociation structure function and show that it obeys the DGLAP evolution equation, but, with an additional inhomogeneous term." [Levin-Wüsthoff,'94]

Pomeron structure is analogous to photon structure

Photon structure function

$$
\begin{gathered}
F_{2}^{\gamma}\left(x_{B}, Q^{2}\right)=\underbrace{\sum_{a=q, g} C_{2, a} \otimes a^{\gamma}}_{\text {Resolved photon }}+\underbrace{C_{2, \gamma}}_{\text {Direct photon }} \\
\text { where } \frac{\partial a^{\gamma}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\underbrace{\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime \gamma}}_{\text {DGLAP term }}+\underbrace{P_{a \gamma}(x)}_{\text {Inhomogeneous term }}
\end{gathered}
$$

Diffractive structure function

$$
\begin{gathered}
F_{2}^{\mathrm{D}(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=\underbrace{\sum_{a=q, g} C_{2, a} \otimes a^{\mathrm{D}}}_{\text {Resolved Pomeron }}+\underbrace{C_{2, \mathbb{P}}}_{\text {Direct Pomeron }} \\
\text { where } \frac{\partial a^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right)}{\partial \ln Q^{2}}=\underbrace{\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime \mathrm{D}}}_{\text {DGLAP term }}+\underbrace{P_{a \mathbb{P}}(z) f_{\mathbb{P}}\left(x_{\mathbb{P}} ; Q^{2}\right)}_{\text {Inhomogeneous term }}
\end{gathered}
$$

Dijets in diffractive photoproduction

- Direct Pomeron contributions $\left(z_{\mathbb{P}}=1\right)$ are neglected in 'Regge factorisation' analyses.

Need for NLO calculations

- NLO analysis of DDIS data is not yet possible.
- Need $C_{2, \mathbb{P}}$ and $P_{a \mathbb{P}}$ at NLO. Should be calculable with usual methods, e.g. LO diagrams are:

Dimensional regularisation: work in $4-2 \varepsilon$ dimensions, collinear singularity appears as $1 / \varepsilon$ pole multiplied by $P_{q \mathbb{P}}$, subtract in e.g. $\overline{M S}$ factorisation scheme to leave finite remainder $C_{2, \mathbb{P}}$.

- Here, present simplified analysis: take NLO $C_{2, a}$ and $P_{a a^{\prime}}$ $\left(a, a^{\prime}=q, g\right)$, but LO $C_{2, \mathbb{P}}$ and $P_{a \mathbb{P}}$.
- Work in Fixed Flavour Number Scheme (no charm DPDF), with charm production via NLO $\gamma^{*} g^{\mathbb{P}} \rightarrow c \bar{c}$ [Riemersma et al.,'95] and LO $\gamma^{*} \mathbb{P} \rightarrow c \bar{c}$ [Levin-Martin-Ryskin-Teubner,'97].
- For light quarks, include LO $\gamma_{L}^{*} \mathbb{P} \rightarrow q \bar{q}$ (higher-twist), but not
$\gamma_{T}^{*} \mathbb{P} \rightarrow q \bar{q}$. [The latter could alternatively be included using
$C_{T, \mathbb{P}}=F_{T, q \bar{q}}^{\mathrm{D}(3)}-\left.F_{T, \bar{q} \bar{q}}^{\mathrm{D}(3)}\right|_{\mu^{2} \ll Q^{2}}$.This subtraction defi nes a choice of factorisation scheme.]

Description of DDIS data

- Take input quark singlet and gluon densities at $Q_{0}^{2}=3 \mathrm{GeV}^{2}$ in the form:

$$
\begin{aligned}
z \Sigma^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q_{0}^{2}\right) & =f_{\mathbb{P}}\left(x_{\mathbb{P}}\right) C_{q} z^{A_{q}}(1-z)^{B_{q}}, \\
z g^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q_{0}^{2}\right) & =f_{\mathbb{P}}\left(x_{\mathbb{P}}\right) C_{g} z^{A_{g}}(1-z)^{B_{g}} .
\end{aligned}
$$

- Take $f_{\mathbb{P}}\left(x_{\mathbb{P}}\right)$ as in the H 12002 (prel.) fit with $\alpha_{\mathbb{P}}(0), C_{a}, A_{a}$, and B_{a} ($a=q, g$) as free parameters.
- Treatment of secondary Reggeon as in H1 2002 fit, i.e. using pion PDFs. (N.B. No good reason that the \mathbb{R} PDFs should be same as pion PDFs.)
- Fit H1 LRG (prel.) and ZEUS M_{X} data separately with cuts $M_{X}>2 \mathrm{GeV}$ and $Q^{2}>3 \mathrm{GeV}^{2}$. Allow overall normalisation factors of 1.10 and 1.43 respectively to account for proton dissociation.
- Statistical and systematic experimental errors added in quadrature.
- Two types of fits:
- "Regge" = 'Regge factorisation' approach (i.e. no $C_{2, \mathbb{P}}$ or $P_{a \mathbb{P}}$) as H1/ZEUS do.
- "pQCD" = 'perturbative QCD' approach with LO $C_{2, \mathbb{P}}$ and $P_{\text {ap }}$.

"pQCD" fits to H1 LRG (prel.) and ZEUS M_{X} data

- $\chi^{2} /$ d.o.f. $=0.71$ (0.75 for "Regge" fit)
- $\chi^{2} /$ d.o.f. $=0.84$ (0.76 for "Regge" fit)

DPDFs from fits to H1 LRG (prel.) and ZEUS M_{X} data

Diffractive quark singlet distribution

Diffractive gluon distribution

- "pQCD" DPDFs are smaller at large z due to inclusion of the higher-twist $\gamma_{L}^{*} \mathbb{P} \rightarrow q \bar{q}$.
- "pQCD" DPDFs have slightly more rapid evolution due to the inhomogeneous term.
- Difference between fi ts to H1 LRG (prel.) and ZEUS M_{x} data not resolved.

Predictions for diffractive charm production

- ZEUS charm data measured using LRG method (as are all final-state DDIS data).
- "pQCD" DPDFs from H1 LRG data (left) give good description, those from ZEUS M_{X} data (right) too small at low β.
- Direct Pomeron contribution, i.e. $\gamma^{*} \mathbb{P} \rightarrow C \bar{C}$ $\left(z_{\mathbb{P}}=1\right)$, is significant at moderate/high β. These charm data points are included in the ZEUS LPS fit [ZEUS: Eur. Phys. J. C 38 (2004) 43], but only the $\gamma^{*} g^{\mathbb{P}} \rightarrow c \bar{c}$ contribution was included and not the $\gamma^{*} \mathbb{P} \rightarrow c \bar{c}$ contribution. Therefore, diffractive gluon from ZEUS LPS fit needed to be artificially large to fit the charm data.

Comment on the LRG method ${ }^{1}$

- LRG method: event selection using cut on maximum (pseudo)rapidity $\eta_{\max }<\eta_{\text {cut }}=3.2$ [H1prelim-01-112].
- Kinematics of \mathbb{P} remnant:

$$
\begin{aligned}
& E=p_{t} \cosh \eta_{\max } \simeq(1-z) x_{\mathbb{P}} E_{p} \\
\Rightarrow & p_{t}>(1-z) x_{\mathbb{P}} E_{p} \operatorname{sech} \eta_{\mathrm{cut}} .
\end{aligned}
$$

- Therefore, strong cut on $\eta_{\text {max }}$ increases relative contribution to DDIS from perturbative Pomeron, i.e. large virtuality $\mu^{2} \simeq p_{t}^{2} /(1-z) \gtrsim 1 \mathrm{GeV}^{2}$.
- Originally discussed by J. Ellis and G. Ross [Phys. Lett. B 384 (1996) 293].
- In recent H 1 measurements, effect of cut on $\eta_{\max }$ is compensated as part of acceptance corrections using RAPGAP event generator.
- \mathbb{P} remnant $p_{t}\left[\mathrm{H} 1\right.$, Eur. Phys. J. C 20 (2001) 29] and $\eta_{\max }$ distributions are well-described by RAPGAP.
- Good agreement of LRG data with leading-proton data. Gives confidence that procedure is correct (although uncertainty due to acceptance correction for cut on $\eta_{\max }$ is dominant uncertainty at high $x_{\mathbb{P}}$).
${ }^{1}$ Thanks to M. Arneodo, H. Lim, and especially P. Newman for discussions.

Comment on the " M_{X} method"

- Reminder: The M_{X} method subtracts non-diffractive events in each $\left(W, Q^{2}\right)$ bin by fitting (in a limited range of $\ln M_{k}^{R}$):

$$
\frac{\mathrm{d} N}{\mathrm{~d} \ln M_{X}^{2}}=D+\underbrace{c \exp \left(b \ln M_{X}^{2}\right)}_{\text {non-diffractive }}
$$

ZEUS

ZEUS: Nucl. Phys. B 713 (2005) 3

Regge theory derivation of the M_{X} method

- Replace pQCD ladders by "effective" Regge trajectories, e.g.

- For $W^{2} \gg M_{x}^{2}$ and $Q^{2} \gg t$, consider triple Regge diagrams:

$$
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln x_{\mathbb{P}}}=\frac{\left|g_{\mathbb{P}}(\bar{t})\right|^{2}}{16 \pi^{2}} x_{\mathbb{P}}^{2-2 \alpha_{\mathbb{P}}(\bar{t})}\left[\mathcal{A}_{\mathbb{P P P P}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{P}}(0)}+\mathcal{A}_{\mathbb{P} P \mathbb{R}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{R}}(0)}\right]
$$

$$
+\frac{\left|g_{\mathbb{R}}(\bar{t})\right|^{2}}{16 \pi^{2}} x_{\mathbb{P}}^{2-2 \alpha_{\mathbb{R}}(\bar{t})}\left[\mathcal{A}_{\mathbb{R} \mathbb{R} \mathbb{P}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{P}}(0)}+\mathcal{A}_{\mathbb{R} \mathbb{R} \mathbb{R}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{R}}(0)}\right]
$$

$$
+\mathbb{P R P}+\mathbb{R} \mathbb{P P}+\mathbb{P} \mathbb{R} \mathbb{R}+\mathbb{R} \mathbb{P} \mathbb{R}
$$

where $\alpha_{\mathbb{P}}(0) \approx 1.1-1.2, \alpha_{\mathbb{R}}(0) \lesssim 0.5$, and \bar{t} is some average value of t.

Regge theory derivation of the M_{X} method

- Since $x_{\mathbb{P}}=\left(M_{X}^{2}+Q^{2}\right) /\left(W^{2}+Q^{2}\right)$ and $\beta=Q^{2} /\left(M_{X}^{2}+Q^{2}\right)$, rewrite as

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)} & =A_{\mathbb{P} \mathbb{P} P}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\mathbb{P} \mathbb{P} \mathbb{R}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\mathbb{R} \mathbb{R} \mathbb{P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})} \\
& +A_{\mathbb{R} \mathbb{R} \mathbb{R}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})} \\
& +\mathbb{P R \mathbb { P }}+\mathbb{R P P P}+\mathbb{P R} \mathbb{R}+\mathbb{R} \mathbb{P} \mathbb{R} .
\end{aligned}
$$

- The Mx method neglects the possible interference terms and further assumes that $M_{X}^{2} \gg Q^{2}(\Rightarrow \beta \ll 1$, so $\mathbb{P P P R}$ and $\mathbb{R} \mathbb{R} \mathbb{R}$ contributions are negligible), and $\alpha_{\mathbb{P}}(0) \approx \alpha_{\mathbb{P}}(\bar{t}) \approx 1$. Then

$$
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln M_{X}^{2}}=D+c\left(M_{X}^{2}\right)^{b}=D+c \exp \left(b \ln M_{X}^{2}\right)
$$

where $b=1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})$.

- Therefore, the subtraction of non-diffractive events made in the Mx method is based on an over-simplifi ed formula, which cannot be justifi ed for $Q \gtrsim M_{X}^{2}$. This might explain the different Q^{2} dependence of the ZEUS M_{x} data observed w.r.t. the H1 LRG (prel.) data.

Regge theory derivation of the M_{X} method

- Since $X_{\mathbb{P}}=\left(M_{X}^{2}+Q^{2}\right) /\left(W^{2}+Q^{2}\right)$ and $\beta=Q^{2} /\left(M_{X}^{2}+Q^{2}\right)$, rewrite as

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)} & =A_{\mathbb{P P P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\operatorname{Ara}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{1}(\bar{T})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{1}(0)-2 \alpha_{a}(\bar{t})} \\
& +A_{\mathbb{R R P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})}
\end{aligned}
$$

- The M_{X} method neglects the possible interference terms and further assumes that $M_{X}^{2} \gg Q^{2}(\Rightarrow \beta \ll 1$, so $\mathbb{P P R}$ and $\mathbb{R} \mathbb{R} \mathbb{R}$ contributions are negligible), and $\alpha_{\mathbb{P}}(0) \approx \alpha_{\mathbb{P}}(\bar{t}) \approx 1$. Then

$$
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln M_{X}^{2}}=D+c\left(M_{X}^{2}\right)^{b}=D+c \exp \left(b \ln M_{X}^{2}\right),
$$

where $b=1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})$.

- Therefore, the subtraction of non-diffractive events made in the M_{X} method is based on an over-simplifi ed formula, which cannot be justifi ed for $Q \gtrsim M_{x}^{2}$. This might explain the different Q^{2} dependence of the ZEUS M_{X} data observed w.r.t. the H1 LRG (prel.) data.

Summary

- Diffractive DIS is more complicated to analyse than inclusive DIS.
- Need to include separate contributions from perturbative Pomeron (calculable) and non-perturbative Pomeron (need to fi to data).
- Collinear factorisation holds, but we need to account for the direct Pomeron coupling:

$$
\begin{aligned}
F_{2}^{\mathrm{D}(3)} & =\sum_{a=q, g} C_{2, a} \otimes a^{\mathrm{D}}+C_{2, \mathbb{P}} \\
\frac{\partial a^{\mathrm{D}}}{\partial \ln Q^{2}} & =\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime \mathrm{D}}+P_{\mathrm{aP}}(z) f_{\mathbb{P}}\left(X_{\mathbb{P}} ; Q^{2}\right)
\end{aligned}
$$

Analogous to the photon case. Direct Pomeron contribution should also be included when calculating jet or heavy quark production.

- Experimental methods: leading-proton and LRG methods seem compatible, but M_{X} method not theoretically justifi ed.
- Premature to make precise claims about factorisation breaking based on existing diffractive PDFs. Need to have good understanding of $\gamma^{*} p$ (HERA) before extending, in turn, to γp (HERA), $p \bar{p}$ (Tevatron) and $p p$ (LHC).

Outlook

- Need direct Pomeron terms $\left(C_{2, \mathbb{P}}\right)$ and Pomeron-to-parton splitting functions ($P_{\text {app }}, a=q, g$) at NLO for a full NLO analysis of data. (Possibly large π^{2}-enhanced virtual loop corrections similar to those found in the Drell-Yan process.)
- Possible to extend formalism to secondary Reggeon component. Perturbative contribution would depend on the square of the (skewed) valence-quark distribution of the proton. (Should also consider possibility of Pomeron-Reggeon interference.)
- Usual problems in any PDF determination: need to study sensitivity to arbitrary choices made in fit, e.g. form of input parameterisation, starting scale Q_{0}, kinematic cuts on fi tted data, heavy favour treatment, α_{S} choice etc. This has not been done for diffractive PDFs in detail: new precise data will help reduce the uncertainties.
- Inclusion of jet and heavy quark diffractive DIS data, and possibly $F_{L}^{D(3)}$ if it is measured, would help to constrain the diffractive PDFs further, but only meaningful if the correct theoretical framework is used (i.e. need to include direct Pomeron contributions).
- Revisit in more detail with improved calculations after the publication of the new H 1 and ZEUS diffractive DIS data.

Appendix: Non-linear evolution of inclusive PDFs

$$
\frac{\partial a\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime}-\int_{x}^{1} \mathrm{~d} x_{\mathbb{P}} P_{\mathrm{aP}}\left(x / x_{\mathbb{P}}\right) f_{\mathbb{P}}\left(X_{\mathbb{P}} ; Q^{2}\right) .
$$

- Interesting application of DDIS formalism to calculate shadowing corrections to inclusive DIS via Abramovsky-Gribov-Kancheli (AGK) cutting rules.
- Inhomogeneous evolution of DPDFs \Rightarrow non-linear evolution of inclusive PDFs.
- More precise version of Gribov-Levin-Ryskin-Mueller-Qiu (GLRMQ) equation derived.
- Fit HERA F_{2} data similar to MRST2001 NLO fit. Small- x gluon enhanced at low scales.
For more details see Phys. Lett. B 627 (2005) 97 (hep-ph/0508093).

