Theory of diffractive structure functions

Graeme Watt

DESY / UCL

DIS 2006, Tsukuba, Japan 20th April 2006

In collaboration with A.D. Martin and M.G. Ryskin (see hep-ph/0511333, and references therein)

Outline

- Diffractive Deep-Inelastic Scattering (DDIS) is characterised by a Large Rapidity Gap (LRG) due to 'Pomeron' (vacuum quantum number) exchange.
- How do we extract Diffractive Parton Density Functions (DPDFs) from DDIS data?

1 Introduction

- 2 'Regge factorisation' approach to DPDFs
- 3 How to reconcile two-gluon exchange with DPDFs?
- Pomeron structure is analogous to photon structure
- 5 Description of DDIS data
- 6 Comments on the experimental methods
- 7 Conclusions

Diffractive DIS kinematics

•
$$q^2 \equiv -Q^2$$

• $W^2 \equiv (q+p)^2 = -Q^2 + 2p \cdot q$
 $\Rightarrow x_B \equiv \frac{Q^2}{2p \cdot q} = \frac{Q^2}{Q^2 + W^2}$ (fraction
of proton's momentum carried by
struck quark)

•
$$t \equiv (p - p')^2 \approx 0, (p - p') \approx x_{\mathbb{P}} p$$

Diffractive structure function $F_2^{D(3)}$

• Diffractive cross section (integrated over *t*):

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{D}}}{\mathrm{d} \mathbf{x}_{\mathbb{P}} \, \mathrm{d} \beta \, \mathrm{d} \, \mathrm{Q}^2} = \frac{2 \pi \alpha_{\mathrm{em}}^2}{\beta \, \mathrm{Q}^4} \, \left[1 + (1 - y)^2 \right] \, \sigma_r^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}}, \beta, \, \mathrm{Q}^2),$$

where $y = Q^2/(x_B s)$, $s = 4E_e E_p$, and

$$\sigma_r^{\mathrm{D}(3)} = F_2^{\mathrm{D}(3)} - \frac{y^2}{1 + (1 - y)^2} F_L^{\mathrm{D}(3)} \approx F_2^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}}, \beta, \mathbb{Q}^2),$$

for small y or assuming that $F_L^{\mathrm{D}(3)} \ll F_2^{\mathrm{D}(3)}$

Measurements of σ_r^{D(3)} ⇒ diffractive parton distribution functions (DPDFs)
 a^D(𝑥_P, z, Q²) = zq^D(𝑥_P, z, Q²) or zq^D(𝑥_P, z, Q²),

where $\beta \le z \le 1$, cf. $x_{B} \le x \le 1$ in DIS.

Recent measurements of DDIS using three methods

- Detect leading proton. No proton dissociation background, but low statistics. Both Pomeron (ℙ) and secondary Reggeon (ℝ) contributions. [ZEUS: Eur. Phys. J. C 38 (2004) 43, H1prelim-01-112]
- 2 Look for Large Rapidity Gap (LRG). (Non-diffractive contribution is exponentially suppressed as a function of the gap size.) Proton dissociation background (*M*_Y < 1.6 GeV). Both ℙ and ℝ contributions. [H1prelim-02-012, H1prelim-02-112, H1prelim-03-011]</p>
- **3** Use " M_X method". Subtract non-diffractive contribution in each (W, Q^2) bin by fitting (in a limited range of $\ln M_X^2$):

$$\frac{\mathrm{d}N}{\mathrm{d}\ln M_X^2} = D + \underbrace{c \exp(b \ln M_X^2)}_{\text{non-diffractive}}$$

Proton dissociation background ($M_Y < 2.3 \text{ GeV}$). Only \mathbb{P} contribution since \mathbb{R} contribution is subtracted as part of non-diffractive contribution. Comment on this method later. [ZEUS: Nucl. Phys. B **713** (2005) 3]

Imminent release of new H1 leading-proton and LRG data: see talk by P. Newman. New ZEUS leading-proton, LRG and M_X data in progress.

Collinear factorisation in DDIS

$$F_2^{\mathrm{D}(3)} = \sum_{a=q,g} C_{2,a} \otimes a^{\mathrm{D}} + \mathcal{O}(1/\mathrm{Q}), \tag{1}$$

where $C_{2,a}$ are the **same** coefficient functions as in inclusive DIS and where the DPDFs $a^{D} = zq^{D}$ or zg^{D} satisfy DGLAP evolution in Q^{2} :

$$\frac{\partial a^{\rm D}}{\partial \ln Q^2} = \sum_{a'=q,g} P_{aa'} \otimes a'^{\rm D}$$
⁽²⁾

"The factorisation theorem applies when Q is made large while x_B , x_P , and t are held fixed." [Collins,'98]

- Says **nothing** about the mechanism for diffraction: information about the diffractive exchange ('Pomeron') needs to be parameterised at an input scale *Q*₀ and fit to data. Will show later that assuming a 'QCD Pomeron' we need to modify both (1) and (2).
- Factorisation should also hold for final states (jets etc.) in DDIS, but is broken in hadron-hadron collisions, although hope that same formalism can be applied with extra suppression factor calculable from eikonal models.
- LO diffractive dijet photoproduction: resolved photon contribution should be suppressed, but direct photon contribution unsuppressed. Complications at NLO [Klasen–Kramer,'05].

H1 2002 (prel.) extraction of DPDFs (ZEUS similar)

Assume Regge factorisation [Ingelman–Schlein,'85]:

$$a^{\mathrm{D}}(x_{\mathbb{P}},z,\mathsf{Q}^2)=\mathit{f}_{\mathbb{P}}(x_{\mathbb{P}})\,a^{\mathbb{P}}(z,\mathsf{Q}^2)$$

• Pomeron flux factor from Regge phenomenology:

$$f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}) = \int_{t_{\text{cut}}}^{t_{\min}} \mathrm{d}t \ \mathrm{e}^{B_{\mathbb{P}} t} \ \mathbf{x}_{\mathbb{P}}^{1-2\alpha_{\mathbb{P}}(t)} \qquad (\alpha_{\mathbb{P}}(t) = \alpha_{\mathbb{P}}(0) + \alpha'_{\mathbb{P}} t)$$

"Regge factorisation relates the power of x_P measured in DDIS to the power of s measured in hadron–hadron elastic scattering." [Collins,'98]

- Fit to H1 LRG (prel.) data gives $\alpha_{\mathbb{P}}(0) = 1.17 > 1.08$, the value of the 'soft Pomeron' [Donnachie–Landshoff,'92]. By Collins' definition, Regge factorisation is broken. H1/ZEUS meaning of 'Regge factorisation' is that the $x_{\mathbb{P}}$ dependence factorises as a power law, with the power independent of β and Q^2 (also broken, see later).
- Pomeron PDFs a^ℙ(z, Q²) = zΣ^ℙ(z, Q²) or zg^ℙ(z, Q²) are DGLAP-evolved from arbitrary inputs at Q₀² = 3 GeV²:

$$a^{\mathbb{P}}(z, Q_0^2) = \left[A_a + B_a(2z-1) + C_a\left(2(2z-1)^2 - 1\right)\right]^2 \exp(-0.01/(1-z))$$

H1 LRG (prel.) vs. ZEUS M_X DPDFs

NLO QCD fits to H1 and ZEUS data

Fits and plot by F.-P. Schilling (H1). Presented at DIS 2005.

- Same procedure used to fit H1 LRG (prel.) and ZEUS M_X data. (ZEUS M_X data scaled by a constant factor to account for different amount of proton dissociation.)
- Gluon from ZEUS M_X fit ~ factor two smaller than gluon from H1 LRG data, due to different Q² dependence of the data sets. Predictions from H1 2002 fit give good agreement with (LRG) DDIS dijet and D* production data.
- N.B. 2-loop α_S fixed by $\Lambda_{QCD} = 200 \text{ MeV}$ for 4 flavours. Gives α_S values much smaller than world average \Rightarrow H1 2002 gluon artificially enhanced. Will be corrected for H1 publication.

H1 LRG (prel.) vs. ZEUS M_X vs. ZEUS LPS DPDFs Diffractive PDFs (x_{rp} =0.01)

Plot by T. Tawara (ZEUS).

- No correction made for different amounts of proton dissociation.
- GLP = Groys–Levy–Proskuryakov (ZEUS) fit to ZEUS M_X data, gives much too low prediction for ZEUS (LRG) DDIS dijets.
- ZEUS LPS fit describes dijets well, but:

"The shape of the fitted PDFs changes significantly depending on the functional form of the initial parameterisation, a consequence of the relatively large statistical uncertainties of the present sample. Therefore, these data cannot constrain the shapes of the PDFs." [ZEUS: Eur. Phys. J. C 38 (2004) 43]

See also talk by A. Bonato.

Q² dependence of effective Pomeron intercept

- Recall that 'Regge factorisation' fits assume that α_P(0), which controls the x_P dependence, is independent of β and Q².
- α_P(0) clearly rises with Q², but is smaller than in inclusive DIS, indicating that the x_P dependence is controlled by some scale μ² < Q².
- α_P(0) > 1.08 [Donnachie–Landshoff,'92] indicating that the Pomeron in DDIS is not the 'soft' Pomeron exchanged in hadron–hadron collisions ⇒ should use pQCD instead of Regge phenomenology. In pQCD, Pomeron exchange can be described by two-gluon exchange.

How to reconcile two-gluon exchange with DPDFs?

Two-gluon exchange calculations are the basis for the colour dipole model description of DDIS.

Right: x_PF^{D(3)}₂ for x_P = 0.0042 as a function of β

[Golec-Biernat-Wüsthoff,'99].

- dotted lines: γ^{*}_T → qq̄g,
- dashed lines: $\gamma_T^* \rightarrow q\bar{q}$,
- dot-dashed lines: $\gamma_L^* \rightarrow q\bar{q}$,

important at low, medium, and high β respectively.

γ^{*}_L → *qq̄* is higher-twist, but DPDFs only include leading-twist contributions, therefore H1/ZEUS DPDFs are artificially large at high z.

p.11/32

Comparison of two approaches

'Regge factorisation' approach

- P is purely non-perturbative, i.e. a Regge pole.
- Q² dependence given by DGLAP.
- Need to fit β dependence.
- *x*_P dependence taken as a power law, with the power either taken from soft hadron data or fitted.
- Only leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- $x_{\mathbb{P}}$ dependence factorises.
- Only applies to inclusive DDIS.

Two-gluon exch. (e.g. dipole model)

- P is purely perturbative, i.e. a gluon ladder.
- Q² dependence predicted.
- β dependence predicted.
- x_ℙ dependence given by square of skewed gluon distribution (or dipole cross section).
- Goes beyond leading-twist.
- Only $q\bar{q}$ and $q\bar{q}g$ final states as products of photon dissociation.
- No concept of DPDFs.
- $x_{\mathbb{P}}$ dependence doesn't factorise.
- Also explains exclusive processes.
- In reality, both non-perturbative and perturbative Pomeron contributions to inclusive DDIS. Want to combine advantages of both approaches while eliminating the limitations. Improve two-gluon exchange calculations by introducing DGLAP evolution in 'Pomeron structure function' allowing universal DPDFs to be extracted.

Combination of two approaches

• Inclusive DDIS consists of both non-perturbative and perturbative Pomeron contributions.

Non-perturbative \mathbb{P} contribution

- P is purely partly non-perturbative, i.e. a Regge pole.
- Q² dependence given by DGLAP.
- Need to fit β dependence.
- *x*_ℙ dependence taken as a power law, with the power either taken from soft hadron data or fitted.
- Only leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- $x_{\mathbb{P}}$ dependence factorises.
- Only applies to inclusive DDIS.

Perturbative \mathbb{P} contribution

- P is purely partly perturbative, i.e. a gluon ladder.
- Q² dependence predicted.
- β dependence predicted.
- x_ℙ dependence given by square of skewed gluon distribution (or dipole cross section).
- Goes beyond leading-twist.
- Full DGLAP evolution in Pomeron structure function.
- Extract universal DPDFs.
- $x_{\mathbb{P}}$ dependence doesn't factorise.
- Also explains exclusive processes.

The QCD Pomeron is a parton ladder

- Generalise γ^{*} → qq̄ and γ^{*} → qq̄g to arbitrary number of parton emissions [Ryskin,'90; Levin–Wüsthoff,'94].
- Work in Leading Logarithmic Approximation (LLA) ⇒ virtualities of *t*-channel partons are strongly ordered: µ₀² ≪ ... ≪ µ² ≪ ... ≪ Q².
 - New feature: integral over scale μ² (starting scale for DGLAP evolution of Pomeron PDFs).

$$\begin{split} F_2^{\mathrm{D}(3)} &= \int_{\mu_0^2}^{Q^2} \frac{\mathrm{d}\mu^2}{\mu^2} f_{\mathbb{P}}(x_{\mathbb{P}};\mu^2) F_2^{\mathbb{P}}(\beta, Q^2;\mu^2) \\ f_{\mathbb{P}}(x_{\mathbb{P}};\mu^2) &= \frac{1}{x_{\mathbb{P}}B_D} \left[R_g \frac{\alpha_{\mathrm{S}}(\mu^2)}{\mu} x_{\mathbb{P}}g(x_{\mathbb{P}},\mu^2) \right]^2 \\ F_2^{\mathbb{P}}(\beta, Q^2;\mu^2) &= \sum_{a=q,g} C_{2,a} \otimes a^{\mathbb{P}} \end{split}$$

B_D from t-integration, R_g from skewedness [Shuvaev et al.,'99]

- Pomeron PDFs $a^{\mathbb{P}}(z, Q^2; \mu^2)$ DGLAP-evolved from an input scale μ^2 up to Q^2 .
- For μ² < μ₀² ~ 1 GeV², replace lower parton ladder with usual Regge pole contribution. Take α_ℙ(0) ≃ 1.08 (or fit) and fit Pomeron PDFs DGLAP-evolved from an input scale μ₀².

Gluonic and sea-quark Pomeron

- Pomeron structure function F^P₂(β, Q²; μ²) calculated from quark singlet Σ^P(z, Q²; μ²) and gluon g^P(z, Q²; μ²) DGLAP-evolved from an input scale μ² up to Q².
- Input Pomeron PDFs $\Sigma^{\mathbb{P}}(z, \mu^2; \mu^2)$ and $g^{\mathbb{P}}(z, \mu^2; \mu^2)$ are Pomeron-to-parton splitting functions.

LO Pomeron-to-parton splitting functions

- LO Pomeron-to-parton splitting functions calculated in Eur. Phys. J. C 44 (2005) 69.
- Notation: ' $\mathbb{P} = G$ ' means gluonic Pomeron, ' $\mathbb{P} = S$ ' means sea-quark Pomeron, ' $\mathbb{P} = GS$ ' means interference between these.

$$\begin{split} z\Sigma^{\mathbb{P}=\mathbf{G}}(z,\mu^2;\mu^2) &= P_{q,\mathbb{P}=\mathbf{G}}(z) = z^3 (1-z), \\ zg^{\mathbb{P}=\mathbf{G}}(z,\mu^2;\mu^2) &= P_{g,\mathbb{P}=\mathbf{G}}(z) = \frac{9}{16} (1+z)^2 (1-z)^2 \\ z\Sigma^{\mathbb{P}=\mathbb{S}}(z,\mu^2;\mu^2) &= P_{q,\mathbb{P}=\mathbb{S}}(z) = \frac{4}{81} z (1-z), \\ zg^{\mathbb{P}=\mathbb{S}}(z,\mu^2;\mu^2) &= P_{g,\mathbb{P}=\mathbb{S}}(z) = \frac{1}{9} (1-z)^2, \\ z\Sigma^{\mathbb{P}=\mathbf{G}\mathbb{S}}(z,\mu^2;\mu^2) &= P_{q,\mathbb{P}=\mathbf{G}\mathbb{S}}(z) = \frac{2}{9} z^2 (1-z), \\ zg^{\mathbb{P}=\mathbf{G}\mathbb{S}}(z,\mu^2;\mu^2) &= P_{g,\mathbb{P}=\mathbf{G}\mathbb{S}}(z) = \frac{1}{4} (1+2z) (1-z)^2 \end{split}$$

Evolve these input Pomeron PDFs from μ^2 up to Q^2 using NLO DGLAP evolution.

Contribution to $F_2^{D(3)}$ as a function of μ^2

$$\begin{aligned} F_2^{\mathrm{D}(3)} &= \int_{\mu_0^2}^{Q^2} \frac{\mathrm{d}\mu^2}{\mu^2} f_{\mathbb{P}}(\boldsymbol{x}_{\mathbb{P}};\boldsymbol{\mu}^2) F_2^{\mathbb{P}}(\beta, Q^2; \boldsymbol{\mu}^2) \\ f_{\mathbb{P}}(\boldsymbol{x}_{\mathbb{P}};\boldsymbol{\mu}^2) &= \frac{1}{\boldsymbol{x}_{\mathbb{P}} B_D} \left[R_g \frac{\alpha_{\mathcal{S}}(\boldsymbol{\mu}^2)}{\boldsymbol{\mu}} \, \boldsymbol{x}_{\mathbb{P}} g(\boldsymbol{x}_{\mathbb{P}},\boldsymbol{\mu}^2) \right]^2 \end{aligned}$$

- Naïvely, f_P(x_P; μ²) ~ 1/μ², so contributions from large μ² are strongly suppressed.
- But x_Pg(x_P, μ²) ~ (μ²)^γ, where γ is the anomalous dimension. In BFKL limit γ ≃ 0.5, so f_P(x_P; μ²) ~ constant.
- HERA domain is in an intermediate region: γ is not small, but is less than 0.5.
- Upper plot: μ²x_ℙf_ℙ(x_ℙ; μ²) is not flat for small x_ℙ. Lower plot: integrand as a function of μ² (using MRST2001 NLO PDFs) ⇒ large contribution from large μ².
- Recall that fits using 'Regge factorisation' include contributions from $\mu^2 \leq Q_0^2$ in the input distributions, but neglect all contributions from $\mu^2 > Q_0^2$, where typically $Q_0^2 \approx 3 \text{ GeV}^2$.

Inhomogeneous evolution of DPDFs

$$F_{2}^{\mathrm{D}(3)} = \sum_{a=q,g} C_{2,a} \otimes a^{\mathrm{D}},$$
where $a^{\mathrm{D}}(\mathbf{x}_{\mathbb{P}}, \mathbf{z}, \mathbf{Q}^{2}) = \int_{\mu_{0}^{2}}^{\mathbf{Q}^{2}} \frac{d\mu^{2}}{\mu^{2}} f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mu^{2}) a^{\mathbb{P}}(\mathbf{z}, \mathbf{Q}^{2}; \mu^{2})$

$$\implies \frac{\partial a^{\mathrm{D}}}{\partial \ln \mathbf{Q}^{2}} = \int_{\mu_{0}^{2}}^{\mathbf{Q}^{2}} \frac{d\mu^{2}}{\mu^{2}} f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mu^{2}) \frac{\partial a^{\mathbb{P}}}{\partial \ln \mathbf{Q}^{2}} + f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mu^{2}) a^{\mathbb{P}}(\mathbf{z}, \mathbf{Q}^{2}; \mu^{2}) \Big|_{\mu^{2} = \mathbf{Q}^{2}}$$

$$= \int_{\mu_{0}^{2}}^{\mathbf{Q}^{2}} \frac{d\mu^{2}}{\mu^{2}} f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mu^{2}) \sum_{a'=q,g} P_{aa'} \otimes a'^{\mathbb{P}} + f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mathbf{Q}^{2}) a^{\mathbb{P}}(\mathbf{z}, \mathbf{Q}^{2}; \mathbf{Q}^{2})$$

$$= \underbrace{\sum_{a'=q,g} P_{aa'} \otimes a'^{\mathrm{D}}}_{\mathrm{DGLAP term}} + \underbrace{f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mathbf{Q}^{2}) P_{a\mathbb{P}}(\mathbf{z})}_{\mathrm{Extra inhomogeneous term}}$$

Inhomogeneous evolution of DPDFs is not a new idea:

"We introduce a diffractive dissociation structure function and show that it obeys the DGLAP evolution equation, **but**, with an additional inhomogeneous term." [Levin–Wüsthoff,'94]

Pomeron structure is analogous to photon structure

Photon structure function

Diffractive structure function

$$F_{2}^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}}, \beta, \mathbf{Q}^{2}) = \underbrace{\sum_{a=q,g} C_{2,a} \otimes a^{\mathrm{D}}}_{\text{Resolved Pomeron}} + \underbrace{C_{2,\mathbb{P}}}_{\text{Direct Pomeron}}$$
where $\frac{\partial a^{\mathrm{D}}(\mathbf{x}_{\mathbb{P}}, z, \mathbf{Q}^{2})}{\partial \ln \mathbf{Q}^{2}} = \underbrace{\sum_{a'=q,g} P_{aa'} \otimes a'^{\mathrm{D}}}_{\text{DGLAP term}} + \underbrace{P_{a\mathbb{P}}(z) f_{\mathbb{P}}(\mathbf{x}_{\mathbb{P}}; \mathbf{Q}^{2})}_{\text{Inhomogeneous term}}$

Dijets in diffractive photoproduction Resolved photon Dire

Need for NLO calculations

- NLO analysis of DDIS data is not yet possible.
- Need C_{2,P} and P_{aP} at NLO. Should be calculable with usual methods, e.g. LO diagrams are:

Dimensional regularisation: work in $4 - 2\varepsilon$ dimensions, collinear singularity appears as $1/\varepsilon$ pole multiplied by $P_{q\mathbb{P}}$, subtract in e.g. \overline{MS} factorisation scheme to leave finite remainder $C_{2,\mathbb{P}}$.

- Here, present simplified analysis: take NLO C_{2,a} and P_{aa}
 - (a, a' = q, g), but LO $C_{2,\mathbb{P}}$ and $P_{a\mathbb{P}}$.
 - Work in Fixed Flavour Number Scheme (no charm DPDF), with charm production via NLO γ^{*}g^P → cc̄ [Riemersma et al.,'95] and LO γ^{*}P → cc̄ [Levin–Martin–Ryskin–Teubner,'97].
 - For light quarks, include LO $\gamma_L^* \mathbb{P} \to q\bar{q}$ (higher-twist), but not $\gamma_T^* \mathbb{P} \to q\bar{q}$. [The latter could alternatively be included using $C_{T,\mathbb{P}} = F_{T,q\bar{q}}^{\mathrm{D}(3)} F_{T,q\bar{q}}^{\mathrm{D}(3)}|_{\mu^2 \ll Q^2}$. This subtraction defines a choice of factorisation scheme.]

Description of DDIS data

Take input quark singlet and gluon densities at Q₀² = 3 GeV² in the form:

$$\begin{split} z\Sigma^{\mathrm{D}}(x_{\mathbb{P}}, z, \, \mathsf{Q}_{0}^{2}) &= f_{\mathbb{P}}(x_{\mathbb{P}}) \,\, C_{q} \, z^{A_{q}} (1-z)^{B_{q}}, \\ zg^{\mathrm{D}}(x_{\mathbb{P}}, z, \, \mathsf{Q}_{0}^{2}) &= f_{\mathbb{P}}(x_{\mathbb{P}}) \,\, C_{g} \, z^{A_{g}} (1-z)^{B_{g}}. \end{split}$$

- Take f_P(x_P) as in the H1 2002 (prel.) fit with α_P(0), C_a, A_a, and B_a (a = q, g) as free parameters.
- Treatment of secondary Reggeon as in H1 2002 fit, i.e. using pion PDFs. (N.B. No good reason that the ℝ PDFs should be same as pion PDFs.)
- Fit H1 LRG (prel.) and ZEUS M_X data separately with cuts $M_X > 2$ GeV and $Q^2 > 3$ GeV². Allow overall normalisation factors of 1.10 and 1.43 respectively to account for proton dissociation.
- Statistical and systematic experimental errors added in quadrature.
- Two types of fits:
 - "**Regge**" = 'Regge factorisation' approach (i.e. **no** $C_{2,\mathbb{P}}$ or $P_{a\mathbb{P}}$) as H1/ZEUS do.
 - "pQCD" = 'perturbative QCD' approach with LO $C_{2,\mathbb{P}}$ and $P_{a\mathbb{P}}$.

"pQCD" fits to H1 LRG (prel.) and ZEUS M_X data

• χ^2 /d.o.f. = 0.71 (0.75 for "Regge" fit)

• χ^2 /d.o.f. = 0.84 (0.76 for "Regge" fit)

DPDFs from fits to H1 LRG (prel.) and ZEUS M_X data

"pQCD" DPDFs are smaller at large z due to inclusion of the higher-twist γ^{*}_L P → qq
 q
 q

• "pQCD" DPDFs have slightly more rapid evolution due to the inhomogeneous term.

Difference between fits to H1 LRG (prel.) and ZEUS M data not resolved.

Predictions for diffractive charm production

- ZEUS charm data measured using LRG method (as are all final-state DDIS data).
- "pQCD" DPDFs from H1 LRG data (left) give good description, those from ZEUS M_X data (right) too small at low β .
- Direct Pomeron contribution, i.e. $\gamma^* \mathbb{P} \to c\bar{c}$ ($z_{\mathbb{P}} = 1$), is significant at moderate/high β . These charm data points are included in the ZEUS LPS fit [ZEUS: Eur. Phys. J. C **38** (2004) 43], but only the $\gamma^* g^{\mathbb{P}} \to c\bar{c}$ contribution was included and not the $\gamma^* \mathbb{P} \to c\bar{c}$ contribution. Therefore, diffractive gluon from ZEUS LPS fit needed to be artificially large to fit the charm data.

Comment on the LRG method¹

 LRG method: event selection using cut on maximum (pseudo)rapidity η_{max} < η_{cut} = 3.2 [H1prelim-01-112].

• Kinematics of
$$\mathbb{P}$$
 remnant:
 $E = p_t \cosh \eta_{\max} \simeq (1 - z) x_{\mathbb{P}} E_p$

$$\Rightarrow p_t > (1-z)x_{\mathbb{P}}E_p \operatorname{sech} \eta_{\operatorname{cut}}.$$

- Therefore, strong cut on η_{max} increases relative contribution to DDIS from perturbative Pomeron, i.e. large virtuality $\mu^2 \simeq p_t^2/(1-z) \gtrsim 1 \text{ GeV}^2$.
- Originally discussed by J. Ellis and G. Ross [Phys. Lett. B 384 (1996) 293].
- In recent H1 measurements, effect of cut on η_{max} is compensated as part of acceptance corrections using RAPGAP event generator.
 - \mathbb{P} remnant p_t [H1, Eur. Phys. J. C **20** (2001) 29] and η_{max} distributions are well-described by RAPGAP.
 - Good agreement of LRG data with leading-proton data.

Gives confidence that procedure is correct (although uncertainty due to acceptance correction for cut on η_{max} is dominant uncertainty at high $x_{\mathbb{P}}$).

¹Thanks to M. Arneodo, H. Lim, and especially P. Newman for discussions.

Comment on the " M_X method"

Reminder: The M_X method subtracts non-diffractive events in each (W,Q²) bin by fitting (in a limited range of ln M²_X):

Regge theory derivation of the M_X method

• Replace pQCD ladders by "effective" Regge trajectories, e.g.

where $\alpha_{\mathbb{P}}(0) \approx 1.1-1.2$, $\alpha_{\mathbb{R}}(0) \lesssim 0.5$, and \overline{t} is some average value of t.

Regge theory derivation of the M_X method

• Since $x_{\mathbb{P}} = (M_X^2 + Q^2)/(W^2 + Q^2)$ and $\beta = Q^2/(M_X^2 + Q^2)$, rewrite as

$$\begin{aligned} \frac{\mathrm{d}\sigma_{\gamma^*p}}{\mathrm{d}\ln(M_X^2+Q^2)} = & A_{\mathbb{PPP}}(\bar{t})(W^2)^{2\alpha_{\mathbb{P}}(\bar{t})-2}(M_X^2+Q^2)^{1+\alpha_{\mathbb{P}}(0)-2\alpha_{\mathbb{P}}(\bar{t})} \\ & + A_{\mathbb{PPR}}(\bar{t})(W^2)^{2\alpha_{\mathbb{P}}(\bar{t})-2}(M_X^2+Q^2)^{1+\alpha_{\mathbb{R}}(0)-2\alpha_{\mathbb{P}}(\bar{t})} \\ & + A_{\mathbb{RRP}}(\bar{t})(W^2)^{2\alpha_{\mathbb{R}}(\bar{t})-2}(M_X^2+Q^2)^{1+\alpha_{\mathbb{P}}(0)-2\alpha_{\mathbb{R}}(\bar{t})} \\ & + A_{\mathbb{RRR}}(\bar{t})(W^2)^{2\alpha_{\mathbb{R}}(\bar{t})-2}(M_X^2+Q^2)^{1+\alpha_{\mathbb{R}}(0)-2\alpha_{\mathbb{R}}(\bar{t})} \\ & + \mathbb{PRP} + \mathbb{RPP} + \mathbb{PRR} + \mathbb{RPR}. \end{aligned}$$

The M_X method neglects the possible interference terms and further assumes that M²_X ≫ Q² (⇒ β ≪ 1, so PPR and RRR contributions are negligible), and α_P(0) ≈ α_P(t) ≈ 1. Then

$$rac{\mathrm{d}\sigma_{\gamma^*p}}{\mathrm{d}\ln M_X^2} = D + c(M_X^2)^b = D + c\exp(b\ln M_X^2),$$

where $b = 1 + \alpha_{\mathbb{P}}(0) - 2\alpha_{\mathbb{R}}(\overline{t})$.

• Therefore, the subtraction of non-diffractive events made in the M_X method is based on an over-simplified formula, which cannot be justified for $Q^2 \gtrsim M_X^2$. This *might* explain the different Q^2 dependence of the ZEUS M_X data observed w.r.t. the H1 LRG (prel.) data.

Regge theory derivation of the M_X method

• Since $x_{\mathbb{P}} = (M_X^2 + Q^2)/(W^2 + Q^2)$ and $\beta = Q^2/(M_X^2 + Q^2)$, rewrite as

$$\frac{\mathrm{d}\sigma_{\gamma^* p}}{\mathrm{d}\ln(M_X^2 + Q^2)} = A_{\mathbb{PPP}}(\bar{t})(W^2)^{2\alpha_{\mathbb{P}}(\bar{t}) - 2}(M_X^2 + Q^2)^{1 + \alpha_{\mathbb{P}}(0) - 2\alpha_{\mathbb{P}}(\bar{t})} + A_{\mathbb{PPR}}(\bar{t})(W^2)^{2\alpha_{\mathbb{P}}(\bar{t}) - 2}(M_X^2 + Q^2)^{1 + \alpha_{\mathbb{R}}(0) - 2\alpha_{\mathbb{P}}(\bar{t})} + A_{\mathbb{RRP}}(\bar{t})(W^2)^{2\alpha_{\mathbb{R}}(\bar{t}) - 2}(M_X^2 + Q^2)^{1 + \alpha_{\mathbb{P}}(0) - 2\alpha_{\mathbb{R}}(\bar{t})} + A_{\mathbb{RRP}}(\bar{t})(W^2)^{2\alpha_{\mathbb{R}}(\bar{t}) - 2}(M_X^2 + Q^2)^{1 + \alpha_{\mathbb{R}}(0) - 2\alpha_{\mathbb{R}}(\bar{t})} + \mathbb{PRP} + \mathbb{RPP} + \mathbb{PRR} + \mathbb{RPR}.$$

The M_X method neglects the possible interference terms and further assumes that M²_X ≫ Q² (⇒ β ≪ 1, so PPR and RRR contributions are negligible), and α_P(0) ≈ α_P(t) ≈ 1. Then

$$\frac{\mathrm{d}\sigma_{\gamma^*p}}{\mathrm{d}\ln M_X^2} = D + c(M_X^2)^b = D + c\exp(b\ln M_X^2),$$

where $b = 1 + \alpha_{\mathbb{P}}(0) - 2\alpha_{\mathbb{R}}(\overline{t})$.

• Therefore, the subtraction of non-diffractive events made in the M_X method is based on an over-simplified formula, which cannot be justified for $\vec{Q} \geq M_X^2$. This *might* explain the different Q^2 dependence of the ZEUS M_X data observed w.r.t. the H1 LRG (prel.) data.

Summary

- Diffractive DIS is more complicated to analyse than inclusive DIS.
- Need to include separate contributions from perturbative Pomeron (calculable) and non-perturbative Pomeron (need to fit to data).
- Collinear factorisation holds, but we need to account for the direct Pomeron coupling:

$$\begin{aligned} F_2^{\mathrm{D}(3)} &= \sum_{\boldsymbol{a}=q,g} \boldsymbol{C}_{2,\boldsymbol{a}} \otimes \boldsymbol{a}^{\mathrm{D}} + \boldsymbol{C}_{2,\mathbb{P}} \\ \frac{\partial \boldsymbol{a}^{\mathrm{D}}}{\partial \ln \mathsf{Q}^2} &= \sum_{\boldsymbol{a}'=q,g} \boldsymbol{P}_{\boldsymbol{a}\boldsymbol{a}'} \otimes \boldsymbol{a'}^{\mathrm{D}} + \boldsymbol{P}_{\boldsymbol{a}\mathbb{P}}(\boldsymbol{z}) f_{\mathbb{P}}(\boldsymbol{x}_{\mathbb{P}};\mathsf{Q}^2) \end{aligned}$$

Analogous to the photon case. Direct Pomeron contribution should also be included when calculating jet or heavy quark production.

- Experimental methods: leading-proton and LRG methods seem compatible, but *M_X* method not theoretically justified.
- Premature to make *precise* claims about factorisation breaking based on existing diffractive PDFs. Need to have good understanding of γ**p* (HERA) before extending, in turn, to γ*p* (HERA), *pp* (Tevatron) and *pp* (LHC).

Outlook

- Need direct Pomeron terms (C_{2,P}) and Pomeron-to-parton splitting functions (P_{aP}, a = q, g) at NLO for a full NLO analysis of data. (Possibly large π²-enhanced virtual loop corrections similar to those found in the Drell–Yan process.)
- Possible to extend formalism to secondary Reggeon component. Perturbative contribution would depend on the square of the (skewed) valence-quark distribution of the proton. (Should also consider possibility of Pomeron–Reggeon interference.)
- Usual problems in any PDF determination: need to study sensitivity to arbitrary choices made in fit, e.g. form of input parameterisation, starting scale Q_0 , kinematic cuts on fi tted data, heavy favour treatment, α_S choice etc. This has not been done for diffractive PDFs in detail: new precise data will help reduce the uncertainties.
- Inclusion of jet and heavy quark diffractive DIS data, and possibly F^{D(3)}
 if it is measured, would help to constrain the diffractive PDFs further, but
 only meaningful if the correct theoretical framework is used (i.e. need
 to include direct Pomeron contributions).
- Revisit in more detail with improved calculations after the publication of the new H1 and ZEUS diffractive DIS data.

Appendix: Non-linear evolution of inclusive PDFs

- Interesting application of DDIS formalism to calculate shadowing corrections to inclusive DIS via Abramovsky–Gribov–Kancheli (AGK) cutting rules.
- Inhomogeneous evolution of DPDFs ⇒ non-linear evolution of inclusive PDFs.
- More precise version of Gribov– Levin–Ryskin–Mueller–Qiu (GLRMQ) equation derived.
- Fit HERA F₂ data similar to MRST2001 NLO fit. Small-x gluon enhanced at low scales.

For more details see Phys. Lett. B 627 (2005) 97 (hep-ph/0508093).