Introduction	Dipole cross sections	Exclusive diffraction at HERA	Extension to Tevatron and LHC	Summary

Exclusive diffractive processes within the dipole picture

Graeme Watt

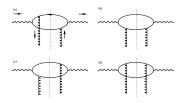
University College London

DIS 2008, London 9th April 2008

In collaboration with H. Kowalski and L. Motyka (hep-ph/0606272, arXiv:0712.2670, + work in progress)

Graeme Watt

Exclusive diffractive processes within the dipole picture


Introduction ●○○	Dipole cross sections	Exclusive diffraction at HERA	Extension to Tevatron and LHC	Summary O
Introdu	ction			

- NLO corrections to exclusive meson production are huge at small x within the collinear factorisation framework [Diehl, Kugler, arXiv:0708.1121].
- Power corrections due to the **transverse momentum** of the partons entering the hard scattering are known to be important. Small-*x* resummation needed.
- These effects are partially included in the k_t factorisation approach or the related colour dipole picture.
- Colour dipole picture is phenomenologically successful, although not yet worked out beyond LO.

 $\mathcal{A}(\gamma^* \rho \to V \rho) \sim (\text{photon wave function}) \cdot (\text{dipole cross section}) \cdot (\text{meson wave function})$

Dipole picture in the non-forward direction

Bartels, Golec-Biernat, Peters [hep-ph/0301192]

- Non-forward photon impact factor calculated in the high-energy limit.
- Fourier transform from momentum space to coordinate space $(\mathbf{k} \rightarrow \mathbf{r})$, then to impact parameter space $(\mathbf{\Delta} \rightarrow \mathbf{b})$, with $t = -\Delta^2$.
- Results obtained in colour dipole picture: amplitude factorises into (wave function) (dipole cross section) (wave function).
- Non-forward wave functions can be written as forward wave functions multiplied by $\exp[\pm i(1-z)\mathbf{r} \cdot \mathbf{\Delta}/2]$.

$$\mathcal{A}_{T,L}^{\gamma^* p \to \mathcal{E}p}(x, Q, \Delta) = \mathrm{i} \, \int \mathrm{d}^2 \mathbf{r} \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2 \mathbf{b} \, (\Psi_E^* \Psi)_{T,L} \, \mathrm{e}^{-\mathrm{i}[\mathbf{b} - (1-z)\mathbf{r}] \cdot \mathbf{\Delta}} \, \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 \mathbf{b}}$$

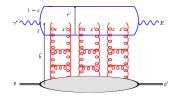
Unified description of exclusive and inclusive processes

Exclusive diffractive processes

$$\frac{\mathrm{d}\sigma_{T,L}^{\gamma^* p \to E p}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^* p \to E p} \right|^2 \left(1 + \tan^2 \left(\frac{\pi \lambda}{2} \right) \right), \ \lambda \equiv \frac{\partial \ln \left(\mathcal{A}_{T,L}^{\gamma^* p \to E p} \right)}{\partial \ln(1/x)}$$

Also include skewness factor ($x' \ll x \ll 1$) according to Shuvaev *et al.* [hep-ph/9902410]: crucial to get the right normalisation.

Inclusive deep-inelastic scattering at small x


$$\begin{split} \sigma_{T,L}^{\gamma^* p}(x,Q) &= \operatorname{Im} \mathcal{A}_{T,L}^{\gamma^* p \to \gamma^* p}(x,Q,\Delta=0) \\ &= \sum_{f} \int \mathrm{d}^2 \mathbf{r} \int_{0}^{1} \frac{\mathrm{d} z}{4\pi} (\Psi^* \Psi)_{T,L}^{f} \int \mathrm{d}^2 \mathbf{b} \; \frac{\mathrm{d} \sigma_{q\bar{q}}}{\mathrm{d}^2 \mathbf{b}} \end{split}$$

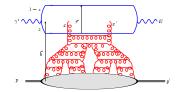
 $\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2\mathbf{b}} = 2 \mathcal{N}(x, r, b), \text{ where } \mathcal{N} \in [0, 1] \text{ and } \mathcal{N} = 1 \text{ is the unitarity limit.}$

 Introduction
 Dipole cross sections
 Exclusive diffraction at HERA
 Extension to Tevatron and LHC
 Summary

 000
 00000000
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Impact parameter dependent saturation (b-Sat) model

Golec-Biernat, Wüsthoff [hep-ph/9807513] \rightarrow Bartels, Golec-Biernat, Kowalski [hep-ph/0203258]


- \rightarrow Kowalski, Teaney [hep-ph/0304189]
- \rightarrow Kowalski, Motyka, G.W. [hep-ph/0606272]
- DGLAP-evolved gluon density with Gaussian b dependence:

$$\begin{split} \mathcal{N}(x,r,b) &= 1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_5(\mu^2)\,xg(x,\mu^2)\,T(b)\right) \\ xg(x,\mu_0^2) &= A_g\,x^{-\lambda_g}\,(1-x)^{5.6}, \quad T(b) = \frac{1}{2\pi B_G}\mathrm{e}^{-\frac{b^2}{2B_G}} \end{split}$$

- $B_G = 4 \text{ GeV}^{-2}$ from *t*-slope of exclusive J/ψ photoproduction.
- Fit to 163 ZEUS F_2 points with $x_{\rm Bj} \leq 0.01$ and $Q^2 \in [0.25, 650]$ GeV² gives a $\chi^2/d.o.f. = 1.21$ with parameters $\mu_0^2 = 1.17$ GeV², $A_g = 2.55$, $\lambda_g = 0.020$.

Impact parameter dependent CGC (b-CGC) model

lancu, Itakura, Munier [hep-ph/0310338]

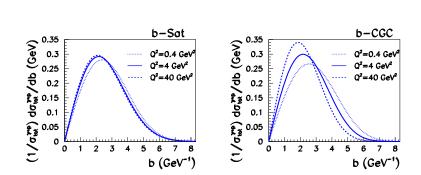
- \rightarrow Kowalski, Motyka, G.W. [hep-ph/0606272]
- \rightarrow G. Soyez [arXiv:0705.3672]
- \rightarrow G.W. [arXiv:0712.2670]
- Approximate solution of the Balitsky–Kovchegov (BK) equation.
- Original colour glass condensate (CGC) model of lancu–ltakura–Munier assumed a factorised *b* dependence.
- Introduce *b* dependence into the saturation scale:

$$\mathcal{N}(x,r,b) = \begin{cases} \mathcal{N}_0\left(\frac{rQ_s}{2}\right)^{2\left(\gamma_s + \frac{\ln(2/rQ_s)}{9.9\lambda\ln(1/x)}\right)} & : & rQ_s \leq 2\\ 1 - e^{-A\ln^2(BrQ_s)} & : & rQ_s > 2 \end{cases}$$

$$Q_s \equiv Q_s(x,b) = \left(rac{x_0}{x}
ight)^{rac{\lambda}{2}} \left[\exp\left(-rac{b^2}{2B_{
m CGC}}
ight)
ight]^{rac{1}{2\gamma_s}}$$

Introduction	Dipole cross sections	Exclusive diffraction at HERA	Extension to Tevatron and LHC	Summary
000	00000	00000000	000000	0

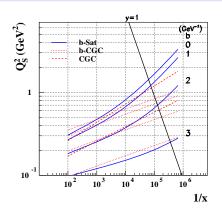
Parameters of b-CGC model


Fit to 133 ZEUS F_2 points with $x_{\text{Bj}} \leq 0.01$ and $Q^2 \in [0.25, 45]$ GeV²:

γ_s	$B_{ m CGC}/{ m GeV^{-2}}$	\mathcal{N}_0	<i>x</i> ₀	λ	$\chi^2/d.o.f.$
0.63 (fixed)	5.5	0.417	$5.95 imes10^{-4}$	0.159	1.62
0.46	7.5	0.558	$1.84 imes10^{-6}$	0.119	0.92
0.43 (no sat.)	7.5	0.565	$1.34 imes10^{-6}$	0.109	0.96

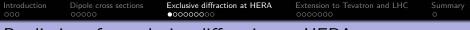
- Value of γ_s = 0.46 close to value obtained from numerical solution of BK equation [Boer, Utermann, Wessels, hep-ph/0701219].
- ... But value of $\lambda = 0.119$ lower than $\lambda \sim 0.3$ expected from perturbative calculation [Triantafyllopoulos, hep-ph/0209121].
- Consider also original CGC model with factorised b dependence:

γ_s	$\sigma_0/{ m mb}$	<i>x</i> ₀	λ	$\chi^2/d.o.f.$
0.74	27.4	$1.63 imes10^{-5}$	0.216	0.86
0.61	37.4	$1.09 imes10^{-7}$	0.170	0.89
0.44 (fixed)	46.3	$2.21 imes 10^{-11}$	0.122	1.39



• $Q^2 = 0.4$, 4, 40 GeV² with $x = 10^{-4}$, 10^{-3} , 10^{-2} respectively.

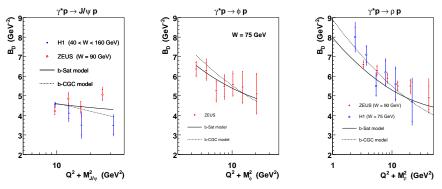
• Median values of b are all between 2 and 3 GeV^{-1} .



• Define saturation scale $Q_S^2 \equiv 2/r_S^2$, where r_S is the dipole size where

 $\mathcal{N} = 1 - \mathrm{e}^{-1/2} \simeq 0.4.$

- $Q_S^2 \lesssim 0.5 \text{ GeV}^2$ in HERA regime for most relevant impact parameters $b \sim 2-3$ GeV⁻¹.
- Recall both CGC solutions ($\gamma_s = 0.74, 0.61$) have similar χ^2 . Solution with lower Q_5^2 more consistent with b-CGC result at some average *b*. Not strong evidence for CGC solution with higher Q_5^2 favoured by G. Soyez [arXiv:0705.3672, and talk at DIS 2008].

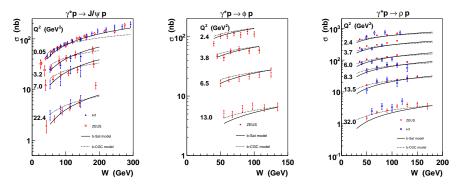

Predictions for exclusive diffraction at HERA

 Confront b-Sat and b-CGC model predictions with wealth of HERA data on exclusive diffractive vector meson production (J/ψ, φ, ρ) and deeply virtual Compton scattering (DVCS).

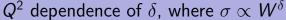
	ZEUS	H1
J/ψ	hep-ex/0201043, hep-ex/0404008	hep-ex/0510016.
ϕ	hep-ex/0504010	—
ρ	arXiv:0708.1478	hep-ex/9902019
DVCS	hep-ex/0305028, ZEUS-prel-07-016	hep-ex/0505061, arXiv:0709.4114

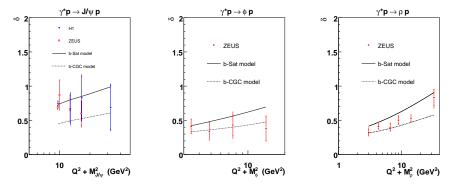
- Significant challenge to simultaneously describe all aspects of the Q², W and t dependence.
- Use a "boosted Gaussian" [Forshaw, Sandapen, Shaw, hep-ph/0312172] vector meson wave function: see hep-ph/0606272 for details. Different wave functions mostly affect overall normalisation and ratio of σ_L/σ_T .

- Recall only **one** free parameter fixed from B_D for J/ψ photoproduction (which also gives normalisation of the *b*-integrated dipole cross section).
- Factor exp[i(1 − z)r · Δ] from non-forward wave functions mainly responsible for dependence of B_D on Q² and M²_V.

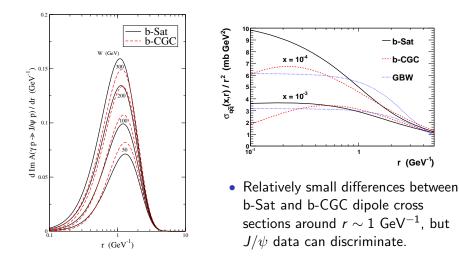


 Both dipole models describe the data well in both shape and normalisation.

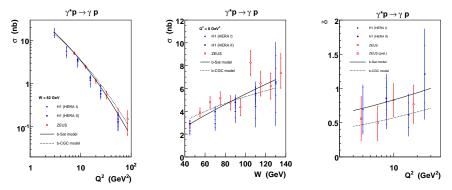



W dependence of vector meson cross sections

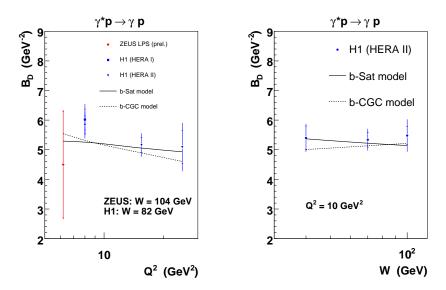
• *W* dependence of J/ψ photoproduction favours b-Sat model.


Exclusive diffraction at HERA Extension to Tevatron and LHC Introduction Dipole cross sections 000000000

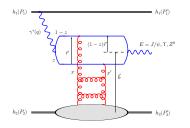
W dependence of J/ψ photoproduction favours b-Sat model. •


• Determine $\alpha_{\mathbb{P}}(t)$ by fitting $\mathrm{d}\sigma/\mathrm{d}t \propto W^{4[\alpha_{\mathbb{P}}(t)-1]}$.

Interplay between x and b better modelled in b-CGC model
 ⇒ better agreement of α'_ℙ with data.



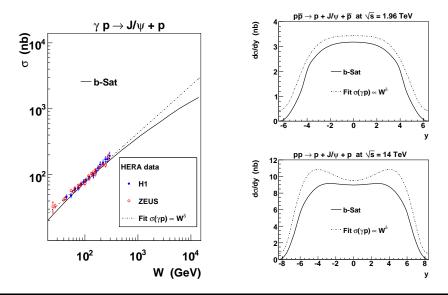
• DVCS theoretically cleaner than vector meson production since no uncertainty from wave function.


 Data not precise enough to distinguish different W dependence of the two models.

Introduction Dipole cross sections Exclusive diffraction at HERA Extension to Tevatron and LHC Summary

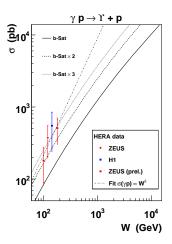
Exclusive photoproduction in hadron-hadron collisions

- Follow Klein and Nystrand [hep-ph/0311164].
- Exclusive final state $E = J/\psi, \Upsilon, Z^0$ with rapidity y.
- Flux dn/dk of quasi-real photons with energy $k \simeq (M_E/2) \exp(y)$.

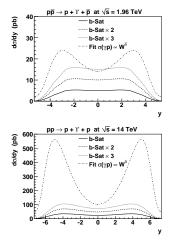

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}(h_1h_2 \to h_1 + E + h_2) = k \frac{\mathrm{d}n}{\mathrm{d}k} \sigma(\gamma p \to E + p) + (y \leftrightarrow -y)$$

Disclaimer

- Neglect interference between photon–Pomeron and Pomeron–photon fusion, and effect of absorptive corrections from soft rescattering.
- Only present cross sections integrated over final state momenta, then these effects will be largely washed out. (Rapidity gap survival factor $S^2 \sim 0.8$ –1.0.)
- Detailed treatment of these effects by Khoze, Martin and Ryskin [hep-ph/0201301] (and also by Schäfer and Szczurek [arXiv:0705.2887]).



Exclusive J/ψ photoproduction at Tevatron and LHC



Extension to Tevatron and LHC Introduction Dipole cross sections 000000

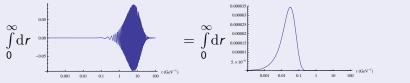
Exclusive Υ photoproduction at Tevatron and LHC

• Uncertainty in m_b and Ψ_{Υ} \Rightarrow Scale by a factor 2–3.

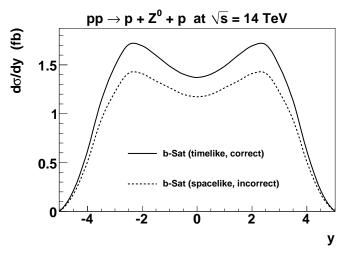
• Sensitive to W dependence of γp cross section.

- Wave functions for an incoming Z^0 with **spacelike** virtuality $q^2 = -Q^2 < 0$ are known from application of the dipole model to charged-current DIS [Fiore, Zoller, hep-ph/0509097].
- For an outgoing Z^0 , need to generalise the dipole picture to the **timelike** case ($q^2 = M^2 > 0$). Wave functions for $q\bar{q} \rightarrow Z^0/\gamma^*$ have been derived by L. Motyka.
- Amplitude for $\gamma p \rightarrow Z^0 + p$ is **not** simply the DVCS amplitude at $Q^2 = M_Z^2$ with a different coupling.
- Pick up **real** contribution to the amplitude related to contribution of an on-shell $q\bar{q}$ pair in addition to the usual imaginary part.

Technical aside: tricky r integration in Z^0 amplitude


Spacelike case (incorrect, \sim DVCS at $Q^2 = M_Z^2$)

Plot imaginary part of *d* quark contribution to $\gamma p \rightarrow Z^0 + p$ amplitude for z = 0.5, t = 0, $x = M_Z/\sqrt{s}$ at LHC (y = 0).


Timelike case (correct): highly oscillatory integrand

Use contour integration $\Rightarrow \int_0^\infty dr f(r) = \int_0^\infty dr i f(ir)$

After z integration, Im A only ~ 5% greater than in spacelike case. But also significant $\operatorname{Re} A \sim 30\% \operatorname{Im} A$.

Exclusive Z^0 rapidity distribution at LHC

• \sim 20% difference between timelike and spacelike formulae.

Introduction 000		clusive diffraction at H	ERA Extension 000000	n to Tevatron and LHC ●	Summary 0
Summa	ry of predictior	is for J/ψ ,	Υ and Z	Z ⁰ producti	on
	$\mathrm{d}\sigma/\mathrm{d}y$ at $y=0$	J/ψ (nb)	Ƴ (pb)	Z ⁰ (fb)	
	Tevatron	3.2	5.0	0.12	
	LHC	9.0	24	1.4	
	σ	J/ψ (nb)	Ƴ (pb)	Z^0 (fb)	
	Tevatron	27	40	0.39	
	LHC	112	173	12	
	Event rate	$J/\psi~({ m s}^{-1})$	Υ (hr ⁻¹)	$Z^0 (yr^{-1})$	
	Tevatron	0.31	0.71	0.084	
	LHC	66	320	130	
• •	Event rates include	lontonic bran	ching ratio	and assume a	

• Event rates include leptonic branching ratio and assume a luminosity $\mathcal{L}=2\times 10^{32}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ (Tevatron) and $\mathcal{L}=10^{34}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ (LHC).

Introduction 000	Dipole cross sections	Exclusive diffraction at HERA	Extension to Tevatron and LHC	Summary •
Summa	ary			

Impact parameter dependent dipole cross sections

- $\ensuremath{\mathsf{b-Sat}}$: eikonalised gluon density with DGLAP evolution.
- b-CGC : improvement to the BK-inspired model of IIM.
- Consistent results for the saturation scale between the two models.

Description of exclusive diffractive processes at HERA

- Both dipole models generally give a good description of data.
- b-Sat better description of W dependence for J/ψ production.
- b-CGC better description of $\alpha'_{\mathbb{P}}$, i.e. correlation between x and b.

Extension to Tevatron and LHC

• Preliminary predictions given for total rates of exclusive J/ψ , Υ and Z^0 photoproduction expected at the Tevatron and LHC.