Diffractive parton distributions: the demise of Regge factorisation

Graeme Watt

DESY

In collaboration with A. D. Martin and M. G. Ryskin

Eur. Phys. J. C 37 (2004) 285 [hep-ph/0406224] and hep-ph/0504132

Introduction

H1 extraction of Diffractive Parton Distribution Functions (DPDFs) from Diffractive Deep-Inelastic Scattering (DDIS) data uses **two** levels of factorisation:

Collinear factorisation is proven to hold asymptotically [Collins,1998]

But needs modification in the sub-asymptotic HERA regime

Regge factorisation is used in 'resolved Pomeron' model [Ingelman-Schlein, 1985]

But should only be used for the 'soft Pomeron' contribution to DDIS, not to describe the whole diffractive structure function. Contribution from 'QCD Pomeron' is calculable using perturbative QCD

H1 2002 (prel.) QCD fit

H1 α_S fixed by $\Lambda_{\text{QCD}} = 200 \pm 30$ MeV

"The strong coupling constant α_S was fixed by setting $\Lambda_{QCD} = 0.2$ GeV for 4 flavours, using the 1(2) loop expression for α_S at LO and NLO respectively" [H1prelim-03-015]

• **Tip:** always specify $\alpha_S(M_Z)$ instead of Λ_{QCD} At NLO, relationship between α_S and Λ_{QCD} is not unique. QCDNUM, CTEQ, and MRST codes all use different definitions. Difference in α_S is tiny if same $\alpha_S(M_Z)$ is used [hep-ph/0502080, Appendix A]

What $\alpha_S(M_Z)$ corresponds		٩	cf. wo
to $\Lambda_{ m QCD}=200$ MeV?			$\alpha_S(M)$
	$\alpha_S(M_Z)$		
LO	0.1282		LO
NLO (QCDNUM)	0.1085		NLO
NLO (CTEQ)	0.1091		NLO
$(m_c = 1.43 \text{ GeV}, m_b = 4.3 \text{ GeV})$			$200\pm$

cf. world average [PDG] $\alpha_S(M_Z) = 0.1187 \pm 0.0020$ $\frac{\Lambda_{\rm QCD}}{125 \text{ MeV}}$

(QCDNUM)	351 MeV
(CTEQ)	336 MeV

 200 ± 30 MeV underestimates error

World average vs. H1 α_S at NLO

 $\partial F_2^{\mathrm{D}(3)} / \partial \ln Q^2 \sim \alpha_S g^{\mathrm{D}}$

 \implies low α_S means H1 2002 (prel.) NLO $g^{\rm D}$ is artificially large

ZEUS M_X data give smaller $g^{\rm D}$

Observations:

- Singlet similar at low Q^2 , evolving differently to higher Q^2
- Gluon factor ~ 2 smaller than H1 gluon

Reminder that data comparisons revealed differences

- at low M_X (high β)
 Most of those points are not included in the fit
- in the Q^2 dependences Different Q^2 evolution means different gluon

 \rightarrow Observed differences in the data explain the differences in the extracted pdfs

Experimental tests of factorisation

- Suppose that the 'Regge factorisation' approach is the correct way to analyse DDIS data ^a
- Premature to make claims about experimental tests of factorisation using final state observables if only the H1 2002 NLO (prel.) DPDFs are ever used:
 - World average α_S would give much smaller $g^{\rm D}$
 - Fitting ZEUS M_X data instead of H1 data would give much smaller $g^{\rm D}$
- In particular, H1 and ZEUS claim that both resolved and direct photoproduction are suppressed by a factor 0.5
- Are these conclusions changed if world average α_S is used, or DPDFs from fit to ZEUS M_X data?

Collinear factorisation in DDIS

$$F_2^{D(3)} = \sum_{a=q,g} C_{2,a} \otimes a^D + \mathcal{O}(1/Q),$$
(1)

where $C_{2,a}$ is the **same** as in inclusive DIS and where $a^{D} = \beta \Sigma^{D}$ or βg^{D} satisfy DGLAP evolution in Q^{2} :

$$\frac{\partial a^{\mathrm{D}}}{\partial \ln Q^2} = \frac{\alpha_S}{2\pi} \sum_{a'=q,g} P_{aa'} \otimes a'^{\mathrm{D}}$$
(2)

"The factorisation theorem applies when Q is made large while x_B , x_{IP} , and t are held fixed." [Collins, 1998]

Says **nothing** about the mechanism for diffraction: what **is** the colourless exchange ('Pomeron') which **causes** the large rapidity gap. Assuming a 'QCD Pomeron' we need to modify both (1) and (2)

H1 extraction of DPDFs

Assume Regge factorisation [Ingelman-Schlein, 1985]:

$$a^{\rm D}(x_{I\!\!P},\beta,Q^2) = f_{I\!\!P}(x_{I\!\!P}) a^{I\!\!P}(\beta,Q^2)$$

Pomeron flux factor from Regge phenomenology:

$$\int_{t_{\rm cut}}^{t_{\rm min}} \mathrm{d}t \frac{\mathrm{e}^{B_{I\!\!P} t}}{x_{I\!\!P}^{2\alpha_{I\!\!P}(t)-1}} \qquad (\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P} t)$$

"Regge factorisation relates the power of x_{IP} measured in DDIS to the power of *s* measured in hadron-hadron elastic scattering." [Collins,1998] Fit to H1 $F_2^{D(3)}$ data gives $\alpha_{IP}(0) = 1.17 > 1.08$ ('soft Pomeron' [Donnachie-Landshoff,1992]) \Longrightarrow Regge factorisation **invalid**

H1 and ZEUS definition of 'Regge factorisation' seems to be that the x_{IP} dependence of $F_2^{D(3)}$ factorises, with **any** $\alpha_{IP}(0)$, from the β and Q^2 dependence: also **invalid** \rightarrow

Diffractive $\alpha_{I\!P}(0)$ depends on Q^2

1.08 (soft Pomeron) $\leq \alpha_{I\!P}(0) \leq 1.3$ (QCD Pomeron)

The QCD Pomeron is a parton ladder

New feature: integral over scale μ^2 (starting scale for DGLAP evolution of Pomeron PDFs)

$$F_{2,\text{pert.}}^{D(3)} = \int_{\mu_0^2}^{Q^2} \frac{\mathrm{d}\mu^2}{\mu^2} f_{I\!P}(x_{I\!P};\mu^2) F_2^{I\!P}(\beta,Q^2;\mu^2)$$
$$f_{I\!P}(x_{I\!P};\mu^2) = \frac{1}{x_{I\!P}B_D} \left[R_g \frac{\alpha_S(\mu^2)}{\mu} x_{I\!P}g(x_{I\!P},\mu^2) \right]^2$$

(B_D from *t*-integration, R_g from skewedness)

 μ_0^2

$$F_{2,\text{non-pert.}}^{D(3)} = f_{I\!P}(x_{I\!P}) F_2^{I\!P}(\beta, Q^2; \mu_0^2)$$

$$f_{I\!P}(x_{I\!P}) = \text{same as in H1 fit, but with } \alpha_{I\!P}(0) = 1.08$$

Separation between QCD Pomeron and soft Pomeron provided by scale $\mu_0 \sim 1 \text{ GeV}$

 $f_{I\!P}(x_{I\!P};\mu^2)$ does not behave as $1/\mu^2$

Using MRST2001 NLO gluon distribution (and temporarily setting $R_a^2/B_D = 1 \text{ GeV}^2$)

Gluonic and sea-quark Pomeron

- Pomeron structure function $F_2^{I\!P}(\beta, Q^2; \mu^2)$ calculated from quark singlet $\Sigma^{I\!P}(\beta, Q^2; \mu^2)$ and gluon $g^{I\!P}(\beta, Q^2; \mu^2)$ DGLAP-evolved from an input scale μ^2 up to Q^2
- Input Pomeron PDFs $\Sigma^{I\!P}(\beta, \mu^2; \mu^2)$ and $g^{I\!P}(\beta, \mu^2; \mu^2)$ are Pomeron-to-parton splitting functions [e.g. Wüsthoff,1997]

Pomeron-to-parton splitting functions

0000000

0000000

0000000

0000000

Notation: IP = G' means gluonic Pomeron, IP = S' means sea-quark Pomeron, IP = GS' means interference between these

 $K_{a/IP}$ parameters account for higher-order corrections to the LO splitting functions. Allow these to go free in fit to data (typically, $K_{a/IP} \sim 1$)

$$\begin{split} \beta \Sigma^{IP=G}(\beta,\mu^{2};\mu^{2}) &= P_{q,IP=G}(\beta) = K_{q/G} \beta^{3} (1-\beta), \\ \beta g^{IP=G}(\beta,\mu^{2};\mu^{2}) &= P_{g,IP=G}(\beta) = K_{g/G} \frac{9}{16} (1+2\beta)^{2} (1-\beta)^{2}, \\ \beta \Sigma^{IP=S}(\beta,\mu^{2};\mu^{2}) &= P_{q,IP=S}(\beta) = K_{q/S} \frac{4}{81} \beta (1-\beta), \\ \beta g^{IP=S}(\beta,\mu^{2};\mu^{2}) &= P_{g,IP=S}(\beta) = K_{g/S} \frac{1}{9} (1-\beta)^{2}, \\ \beta \Sigma^{IP=GS}(\beta,\mu^{2};\mu^{2}) &= P_{q,IP=GS}(\beta) = \sqrt{K_{q/G}K_{q/S}} \frac{2}{9} \beta^{2} (1-\beta), \\ \beta g^{IP=GS}(\beta,\mu^{2};\mu^{2}) &= P_{g,IP=GS}(\beta) = \sqrt{K_{g/G}K_{g/S}} \frac{1}{4} (1+2\beta) (1-\beta)^{2} \end{split}$$

Evolve these input Pomeron PDFs from μ^2 up to Q^2 using NLO DGLAP evolution

Inhomogeneous evolution of DPDFs

$$a_{\text{pert.}}^{\text{D}}(x_{I\!\!P},\beta,\boldsymbol{Q^2}) = \int_{\mu_0^2}^{\boldsymbol{Q^2}} \frac{\mathrm{d}\mu^2}{\mu^2} f_{I\!\!P}(x_{I\!\!P};\mu^2) a^{I\!\!P}(\beta,\boldsymbol{Q^2};\mu^2).$$

Differentiate with respect to $\ln Q^2$:

$$\frac{\partial a_{\text{pert.}}^{\text{D}}}{\partial \ln Q^2} = \frac{\alpha_S}{2\pi} \sum_{a'=q,g} P_{aa'} \otimes a'_{\text{pert.}}^{\text{D}} + \underbrace{f_{I\!P}(x_{I\!P}; Q^2) P_{aI\!P}(\beta)}_{\text{Extra inhomogeneous term}}$$

Analogous to inhomogeneous evolution of photon PDFs [Witten,1977] Inhomogeneous evolution of DPDFs is **not a new idea**:

"We introduce a diffractive dissociation structure function and show that it obeys the DGLAP evolution equation, **but**, with an additional inhomogeneous term." [Levin-Wüsthoff,1994]

Non-factorisable contributions

i.e. contributions to DDIS that **can't** be written as:

- Longitudinally polarised photon gives **twist-four** contribution important at large β : $F_{L,tw.4}^{D(3)}$ [e.g. Golec-Biernat–Wüsthoff,2001]
- In FFNS (no charm Pomeron PDF), need to add this 'direct' contribution for charm quarks for both T and Lpolarised photons: $F_{2,\text{direct}}^{D(3),c\bar{c}}$
- **Dijets:** also need to add this contribution (both T and L polarised photons)

What are the free parameters?

 $F_{2,\text{pert.}}^{D(3)}$: **4** parameters ('K-factors' for Pomeron-to-parton splitting functions) $F_{L,\text{tw.4}}^{D(3)}$: **2** parameters (again, 'K-factors' to account for unknown higher-order corrections) $F_{2,\text{non-pert.}}^{D(3)}$: **2** parameters. Input Pomeron PDFs unknown (as in H1 fit). Assume same β dependence as for sea-quark QCD Pomeron, with different normalisations

$$F_{2,IR}^{D(3)}$$
: **1** parameter (as in H1 fit). Use GRV pion PDFs

 $\mu_0 \sim 1 \text{ GeV}$: the scale separating the soft Pomeron and the QCD Pomeron. Take $\mu_0 = 1$ GeV. Larger μ_0 gives worse χ^2 , don't know proton PDFs at smaller μ_0 . If replace proton gluon distribution by power law (with zero sea quark distribution), and vary μ_0 , best fit is obtained with $\mu_0^2 = 0.8 \text{ GeV}^2$

Allow overall normalisation factors for ZEUS M_X and H1 data to account for proton dissoc.

DPDFs compared to H1 fit

Fits published in EPJC **37** (2004) 285 (using MRST2001 NLO PDFs)

Why is MRW g^{D} smaller than H1 ?

$$F_{2,\text{pert.}}^{D(3)}(x_{IP},\beta,Q^2) = \int_{\mu_0^2}^{Q^2} \frac{d\mu^2}{\mu^2} f_{IP}(x_{IP};\mu^2) F_2^{IP}(\beta,Q^2;\mu^2)$$
$$\frac{\partial F_{2,\text{pert.}}^{D(3)}}{\partial \ln Q^2} = \int_{\mu_0^2}^{Q^2} \frac{d\mu^2}{\mu^2} f_{IP}(x_{IP};\mu^2) \frac{\partial F_2^{IP}(\beta,Q^2;\mu^2)}{\partial \ln Q^2} + f_{IP}(x_{IP};Q^2) F_2^{IP}(\beta,Q^2;Q^2)$$

$$rac{\partial F_2^{\mathrm{D}(3)}}{\partial \ln Q^2} \sim lpha_S \, g^\mathrm{D} + \mathrm{Extra~inhomogeneous~term}$$

H1 2002 (prel.) NLO QCD fit uses a low α_S and neglects the inhomogeneous term

 \implies H1 fit needs a larger $g^{\rm D}$ to reproduce the Q^2 slope of data

$g^{\rm D}$ from fits to H1 vs. ZEUS data

Q. Why is MRW g^D from fit to only H1 data smaller (at low β) than g^D from fit to only ZEUS M_X data?
 ('Regge factorisation' fits find that the opposite is true, due to the larger scaling

violations seen in the H1 data)

- A. Because of the stronger inhomogeneous term in the fit to only H1 data
 - Inhomogeneous term is stronger for gluonic Pomeron than sea-quark Pomeron (because gluon distribution increases more rapidly with scale than sea quarks)
 - Free parameters turn out very different for fits to only H1 data and only ZEUS data [EPJC 37 (2004) 285, Table 2]
 - Parameters for gluonic Pomeron (IP = G) consistent with zero for both ZEUS LPS and M_X data, but **not** for H1 data
 - Hence a smaller g^D is required for the fit to only H1 data, which has a large gluonic Pomeron component, even though the H1 data has larger scaling violations than the ZEUS data
 - Demonstrate by plotting contribution of inhomogeneous term to $\partial F_2^{{
 m D}(3)}/\partial \ln Q^2$ \longrightarrow

Q^2 slope of ZEUS vs. H1 data

- **Solution** ZEUS (H1) data: positive scaling violations for $\beta \leq 0.4$ (0.75)
- Difference between ZEUS and H1 scaling violations is an experimental issue: needs further investigation
- Which data sets are 'correct'? Without this knowledge, should fit all sets together (philosophy of 'global' analysis) → get some 'average' result (?)

Fit to ZEUS + H1 $F_2^{D(3)}$

H1 Diffraction Physics WG Meeting, 24th May 2005 - p.22/25

Fit to ZEUS + H1 $F_2^{D(3)}$

MRW 2004 DPDFs

Available from

http://www.desy.de/~watt/mrw2004dpdfs.tar.gz

- Fits are exactly those published in EPJC **37** (2004) 285
- Large 3-D grid for $a^{D}(x_{IP}, \beta, Q^{2})$ with Fortran code to interpolate (User doesn't need to perform inhomogeneous evolution themselves)
- Can be used for final state predictions in DDIS, e.g. dijet and D* meson production cross sections, using standard NLO QCD codes
- **...But** need to add non-factorisable contributions separately
- Update in progress (MRW 2005):
 - Account for shadowing corrections in proton PDFs as in Phys. Rev. D 70 (2004) 091502 [hep-ph/0406225]
 - Include $F_{2,\text{direct}}^{D(3),c\bar{c}}$ (not in MRW 2004) and use more precise $F_{L,\text{tw},4}^{D(3)}$
 - Fit H1 FPS and LRG (low and high Q^2) data when published

Conclusions

- Diffractive DIS is more complicated than inclusive DIS: can't blindly apply collinear factorisation with DGLAP-evolved DPDFs
- Regge factorisation should only be used for soft Pomeron
- Significant contribution to DDIS from QCD Pomeron
- QCD Pomeron modifies DDIS factorisation:
 - Inhomogeneous evolution of DPDFs
 - Need to add non-factorisable contributions separately
- This approach leads to quite different DPDFs than those obtained using naïve 'Regge factorisation' approach of H1
- ZEUS and H1 DDIS data give different DPDFs due to their different Q^2 dependence: should be investigated further