Introduction 000 Saturation scale

Exclusive vector meson production 000000

Exclusive J/ψ photoproduction in ep collisions within the dipole picture

Graeme Watt

IPPP Durham, UK

LHeC premeeting: small x and high parton densities CERN, Geneva, 27th June 2009

Graeme Watt

 Introduction
 Dipole cross sections
 Saturation scale
 Exclusive vector meson production
 Summary

 000
 000000
 000
 000000
 0
 0

Dipole picture in the non-forward direction

[Bartels, Golec-Biernat, Peters, hep-ph/0301192]

- Non-forward photon impact factor calculated in the high-energy limit.
- Fourier transform from momentum space to coordinate space $(\mathbf{k} \rightarrow \mathbf{r})$, then to impact parameter space $(\mathbf{\Delta} \rightarrow \mathbf{b})$, with $t = -\Delta^2$.
- Results obtained in colour dipole picture: amplitude factorises into (wave function) · (dipole cross section) · (wave function).
- Non-forward wave functions can be written as forward wave functions multiplied by $\exp[\pm i(1-z)\mathbf{r} \cdot \mathbf{\Delta}/2]$.

$$\mathcal{A}_{T,L}^{\gamma^* p \to \mathcal{E}p}(x, Q, \Delta) = \mathrm{i} \, \int \mathrm{d}^2 \mathbf{r} \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2 \mathbf{b} \, (\Psi_E^* \Psi)_{T,L} \, \mathrm{e}^{-\mathrm{i}[\mathbf{b} - (1-z)\mathbf{r}] \cdot \Delta} \, \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 \mathbf{b}}$$

Unified description of exclusive and inclusive processes

Exclusive diffractive processes $\frac{\mathrm{d}\sigma_{T,L}^{\gamma^* p \to E p}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^* p \to E p} \right|^2$ with corrections from the real part of the amplitude and from

skewedness ($x' \ll x \ll 1$) [Shuvaev *et al.*, hep-ph/9902410].

Inclusive deep-inelastic scattering (DIS) at small x

$$\begin{split} \sigma_{T,L}^{\gamma^* p}(x,Q) &= \operatorname{Im} \mathcal{A}_{T,L}^{\gamma^* p \to \gamma^* p}(x,Q,\Delta=0) \\ &= \sum_{f} \int \mathrm{d}^2 \mathbf{r} \int_{0}^{1} \frac{\mathrm{d}z}{4\pi} (\Psi^* \Psi)_{T,L}^{f} \int \mathrm{d}^2 \mathbf{b} \; \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 \mathbf{b}} \end{split}$$

Inclusive diffractive DIS [Kowalski *et al.*, arXiv:0805.4071] \rightarrow C. Marquet.

Importance of explicit impact parameter dependence

 $\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^{2}\mathbf{b}} = 2 \mathcal{N}(x, r, b), \text{ where } \mathcal{N} \in [0, 1] \text{ and } \mathcal{N} = 1 \text{ is the unitarity limit.}$

• Most dipole models assume a factorised *b* dependence:

$$\mathcal{N}(x,r,b) = T(b)\mathcal{N}(x,r), \quad ext{with } \mathcal{N}(x,r) \in [0,1],$$

e.g. $T(b) = \Theta(R_p - b)$, so that the *b*-integrated $\sigma_{q\bar{q}}$ is

$$\sigma_{q\bar{q}} = 2 \int \mathrm{d}^2 \mathbf{b} \ \mathcal{N}(x, r, b) = 2 \int \mathrm{d}^2 \mathbf{b} \ T(b) \mathcal{N}(x, r) = \sigma_0 \mathcal{N}(x, r).$$

• But . . .

1 "Saturation scale" is strongly dependent on impact parameter.

- **2** T(b) should be fixed from *t*-dependence of exclusive diffraction.
- **3** Non-zero $\alpha'_{\mathbb{P}}$ measured at HERA $\Rightarrow b$ and x dependence correlated.

 $\Rightarrow \mathcal{N}(x, r, b)$ should be determined from a **simultaneous** description of inclusive DIS and exclusive diffractive processes.

Impact parameter dependent saturation (b-Sat) model

- Golec-Biernat, Wüsthoff [hep-ph/9807513]
- \rightarrow Bartels, Golec-Biernat, Kowalski [hep-ph/0203258]
- \rightarrow Kowalski, Teaney [hep-ph/0304189]
- → Kowalski, Motyka, G.W. [hep-ph/0606272]

• Eikonalised DGLAP-evolved gluon density with Gaussian *b* dependence:

$$\mathcal{N}(x, r, \mathbf{b}) = 1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_5(\mu^2)xg(x, \mu^2) T(\mathbf{b})\right)$$
$$xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}, \quad T(\mathbf{b}) = \frac{1}{2\pi B_G} e^{-\frac{\mathbf{b}^2}{2B_G}}, \quad \mu^2 = \frac{4}{r^2} + \mu_0^2$$

- $B_G = 4 \text{ GeV}^{-2}$ from *t*-slope of exclusive J/ψ photoproduction.
- Fit to 163 ZEUS F_2 points with $x_{\rm Bj} \leq 0.01$ and $Q^2 \in [0.25, 650] \text{ GeV}^2$ gives a $\chi^2/\text{d.o.f.} = 1.21$ with parameters: $\mu_0^2 = 1.17 \text{ GeV}^2$, $A_g = 2.55$, $\lambda_g = 0.020$.

- lancu, Itakura, Munier (IIM) [hep-ph/0310338] → Kowalski, Motyka, G.W. [hep-ph/0606272]
- \rightarrow G.W., Kowalski [arXiv:0712.2670]

(N.B. Charm quarks not included by IIM.)

- Approximate solution of the Balitsky–Kovchegov (BK) equation.
- Original colour glass condensate (CGC) model of lancu, Itakura and Munier assumed a factorised **b** dependence, $\Theta(R_p b)$.
- Introduce *b* dependence into the saturation scale:

$$\mathcal{N}(x, r, \mathbf{b}) = \begin{cases} \mathcal{N}_0\left(\frac{rQ_s}{2}\right)^{2\left(\gamma_s + \frac{\ln(2/rQ_s)}{9.9\lambda \ln(1/x)}\right)} & : & rQ_s \leq 2\\ 1 - e^{-A\ln^2(BrQ_s)} & : & rQ_s > 2 \end{cases}$$

$$Q_s \equiv Q_s(x, \mathbf{b}) = \left(\frac{x_0}{x}\right)^{\frac{\lambda}{2}} \left[\exp\left(-\frac{\mathbf{b}^2}{2B_{\rm CGC}}\right)\right]^{\frac{1}{2\gamma_s}}$$

Parameters of b-CGC model [arXiv:0712.2670]

Fit to 133 ZEUS F_2 points with $x_{\rm Bj} \leq 0.01$ and $Q^2 \in [0.25, 45]$ GeV²:

γ_s	$B_{ m CGC}/{ m GeV^{-2}}$	\mathcal{N}_0	<i>x</i> ₀	λ	$\chi^2/d.o.f.$
0.63 (fixed)	5.5	0.417	$5.95 imes10^{-4}$	0.159	1.62
0.46	7.5	0.558	$1.84 imes10^{-6}$	0.119	0.92
0.43 (no sat.)	7.5	0.565	$1.34 imes10^{-6}$	0.109	0.96

- $B_{\rm CGC}$ from *t*-slope of exclusive J/ψ photoproduction.
- Value of $\gamma_s = 0.63$ fixed in hep-ph/0606272, but not good χ^2 .
- Value of $\gamma_s = 0.46$ close to value of 0.44 obtained from solution of BK equation [Boer, Utermann, Wessels, hep-ph/0701219].
- ... But value of $\lambda = 0.119$ lower than $\lambda \sim 0.3$ expected from perturbative calculation [Triantafyllopoulos, hep-ph/0209121].
- "no sat." model: fit without explicit unitarisation.

Impact parameter dependence of total $\gamma^* p$ cross section

• $Q^2 = 0.4$, 4, 40 GeV² with $x = 10^{-4}$, 10^{-3} , 10^{-2} respectively.

• Median impact parameters are all between 2 and 3 GeV⁻¹.

b-integrated dipole cross sections from different models

Introduction Dipole cross sections Saturation scale Exclusive vector meson production Summar o

• Define r_S as the dipole size where $\mathcal{N}(x, r_S[, b]) = 1 - e^{-1/2} \simeq 0.4$.

• $Q_{\rm S}^2 \lesssim 0.5 \ {\rm GeV}^2$ in HERA regime for relevant $b \sim 2-3 \ {\rm GeV}^{-1}$.

• Generally lower than perturbatively expected $\lambda_S \sim 0.3$.

- W dependence of J/ψ photoproduction favours b-Sat model.
- Slope of B_D (*t*-slope) vs. *W*, i.e. $\alpha'_{\mathbb{P}}$, favours b-CGC model.

"Diffractive dips" in elastic $\mathrm{d}\sigma/\mathrm{d}t$ at large t

Compilation of pp elastic cross section data:

[Kowalski, Teaney, hep-ph/0304189] [Arneodo, Diehl, hep-ph/0511047].

Graeme Watt

Summarv				
000	000000	000	000000	•
Introduction	Dipole cross sections	Saturation scale	Exclusive vector meson production	Summany

Impact parameter dependent dipole cross sections

- b-Sat : eikonalised gluon density with DGLAP evolution.
- b-CGC : improvement to the BK-inspired model of IIM.
- Consistent results for the saturation scale between the two models.

Description of exclusive diffractive processes at HERA

- Both dipole models generally give a good description of data.
- b-Sat better description of W dependence for J/ψ production.
- b-CGC better description of $\alpha'_{\mathbb{P}}$, i.e. correlation between x and b.

Exclusive diffractive J/ψ photoproduction at the LHeC

- Presented extrapolation of W dependence to LHeC energies.
- "Diffractive dips" at large |t|: measurable at LHeC?