Introduction	Heavy quarks	Inclusive jets	PDF uncertainties	PDFs and alphaS	Summary

Parton distribution functions and α_S

Graeme Watt

IPPP Durham, UK

LoopFest VIII, Madison, Wisconsin May 9, 2009

In collaboration with A.D. Martin, W.J. Stirling and R.S. Thorne
[arXiv:0901.0002 ("MSTW 2008", 154 pages) and paper in preparation]
MSTW = MRST - R.G. Roberts (now retired) + G.W. (since 2006)
http://projects.hepforge.org/mstwpdf/

$$\sigma_{AB} = \sum_{a,b=q,g} f_{a/A}(x_a,\mu_F^2) \otimes f_{b/B}(x_b,\mu_F^2) \otimes \hat{\sigma}_{ab}$$

• Expand $\hat{\sigma}_{ab}$, $P_{aa'}$ and β as perturbative series in α_S ($\overline{\mathrm{MS}}$ scheme):

$$\hat{\sigma}_{ab} = \alpha_{S}^{r} \left[\hat{\sigma}_{ab}^{\text{LO}} + \alpha_{S} \hat{\sigma}_{ab}^{\text{NLO}} + \alpha_{S}^{2} \hat{\sigma}_{ab}^{\text{NNLO}} \dots \right] \quad (r \ge 0)$$

$$\frac{\partial f_{a/A}}{\partial \ln Q^{2}} = \alpha_{S} \sum_{a'=q,g} \left[P_{aa'}^{\text{LO}} + \alpha_{S} P_{aa'}^{\text{NLO}} + \alpha_{S}^{2} P_{aa'}^{\text{NNLO}} \dots \right] \otimes f_{a'/A}$$

$$\frac{\partial \alpha_{S}}{\partial \ln Q^{2}} = -\beta^{\text{LO}} \alpha_{S}^{2} - \beta^{\text{NLO}} \alpha_{S}^{3} - \beta^{\text{NNLO}} \alpha_{S}^{4} - \dots$$

• Need to extract input values $f_{a/A}(x, Q_0^2)$ and $\alpha_S(M_Z^2)$ from data.

0 0 0000000 0	0000000	00000 0000000	0 0
Data sets fitted in M	1STW 200	08 NLO analysis [a	rXiv:0901.0002
Data set H1 MB 99 e^+p NC H1 MB 97 e^+p NC H1 low Q ² 96–97 e^+p NC H1 high Q ² 98–99 e^-p NC H1 high Q ² 99–00 e^+p NC ZEUS SVX 95 e^+p NC ZEUS 96–97 e^+p NC ZEUS 98–99 e^-p NC ZEUS 99–00 e^+p NC ZEUS 99–00 e^+p NC ZEUS 99–00 e^+p NC H1 99–00 e^+p CC ZEUS 96–97 e^+p incl. jets ZEUS 96–97 e^+p incl. jets	$\begin{array}{c c} \hline \chi^2 & / & N_{\rm pts.} \\ \hline 9 & / & 8 \\ \hline 42 & / & 64 \\ 44 & / & 80 \\ 122 & / & 126 \\ 131 & / & 147 \\ 35 & / & 30 \\ 86 & / & 144 \\ 54 & / & 92 \\ 63 & / & 90 \\ 29 & / & 28 \\ 38 & / & 30 \\ 107 & / & 83 \\ 19 & / & 24 \\ 30 & / & 30 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline \hline Data set \\ \hline \hline BCDMS $\mu p F_2 \\ BCDMS $\mu d F_2 \\ BCDMS $\mu d F_2 \\ NMC $\mu p F_2 \\ NMC $\mu n / \mu p$ \\ E665 $\mu p F_2 \\ E665 $\mu d F_2 \\ SLAC $ep F_2 \\ SLAC $ep F_2 \\ SLAC $ep F_2 \\ SLAC $ed F_2 \\ NMC/BCDMS/SLAC F_L \\ \hline E866/NuSea $pp DY$ \\ \hline E866/NuSea $pd / pp DY$ \\ \hline \hline NuTeV $\nu N F_2 \\ \hline CHORUS $\nu N F_2 \\ \hline \end{tabular}$	$\begin{array}{r} \chi^2 \ / \ N_{\rm pts.} \\ \hline 182 \ / \ 163 \\ 190 \ / \ 151 \\ 121 \ / \ 123 \\ 102 \ / \ 123 \\ 130 \ / \ 148 \\ 57 \ / \ 53 \\ 53 \ / \ 53 \\ 30 \ / \ 37 \\ 30 \ / \ 38 \\ 38 \ / \ 31 \\ \hline 228 \ / \ 184 \\ 14 \ / \ 15 \\ \hline 49 \ / \ 53 \\ 26 \ / \ 42 \end{array}$
$\frac{2EUS 98-00 \ e^{\perp}p \text{ incl. jets}}{D\emptyset \text{ II } p\overline{p} \text{ incl. jets}}$		NuTeV $\nu N \times F_3$ CHORUS $\nu N \times F_3$	40 / 45 31 / 33
CDF II $p\bar{p}$ incl. jets CDF II $W \rightarrow l\nu$ asym. DØ II $W \rightarrow l\nu$ asym	56 / 76 29 / 22 25 / 10	$\begin{array}{c} CCFR \ \nu N \to \mu \mu X \\ NuTeV \ \nu N \to \mu \mu X \end{array}$	66 / 86 39 / 40
DØ II Z rap. CDF II Z rap.	19 / 28 49 / 29	All data sets	2543 / 2699

• Red = New w.r.t. MRST 2006 fit.

At input scale
$$Q_0^2 = 1$$
 GeV² (notation: $f_{a/p} \equiv a$):

$$\begin{aligned} xu_{v} &= A_{u} x^{\eta_{1}} (1-x)^{\eta_{2}} (1+\epsilon_{u} \sqrt{x} + \gamma_{u} x) \\ xd_{v} &= A_{d} x^{\eta_{3}} (1-x)^{\eta_{4}} (1+\epsilon_{d} \sqrt{x} + \gamma_{d} x) \\ xS &= A_{S} x^{\delta_{S}} (1-x)^{\eta_{S}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x(\bar{d} - \bar{u}) &= A_{\Delta} x^{\eta_{\Delta}} (1-x)^{\eta_{S}+2} (1+\gamma_{\Delta} x + \delta_{\Delta} x^{2}) \\ xg &= A_{g} x^{\delta_{g}} (1-x)^{\eta_{g}} (1+\epsilon_{g} \sqrt{x} + \gamma_{g} x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} \\ x(s+\bar{s}) &= A_{+} x^{\delta_{S}} (1-x)^{\eta_{+}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x(s-\bar{s}) &= A_{-} x^{\delta_{-}} (1-x)^{\eta_{-}} (1-x/x_{0}) \end{aligned}$$

- A_u , A_d , A_g and x_0 are determined from sum rules.
- 20 parameters allowed to go free for error propagation,
 cf. 15 for MRST error PDF sets (1 more for g, 4 more for s, s̄).

Fixed flavor number scheme

- No heavy quark PDF.
- Includes $\mathcal{O}(m_H^2/Q^2)$ terms.
- No resummation of $\alpha_{S} \ln(Q^{2}/m_{H}^{2})$ terms.

Zero-mass variable flavor number scheme

- Use heavy quark PDF.
- Mass dependence neglected.
- Resums $\alpha_{S} \ln(Q^{2}/m_{H}^{2})$ terms similar to light quarks.

Recent review by R. Thorne and W.-K. Tung [arXiv:0809.0714]

- Interpolate between two well-defined regions: FFNS for $Q^2 \le m_H^2$, ZM-VFNS for $Q^2 \gg m_H^2$.
- Define by demanding equivalence of the $n_f = n$ (FFNS) and $n_f = n + 1$ (VFNS) flavor descriptions above transition point:

$$\begin{aligned} F_{i}(x,Q^{2}) &= \sum_{k} C_{i,k}^{\mathrm{FF},n}(Q^{2}/m_{H}^{2}) \otimes f_{k}^{n}(Q^{2}) \\ &= \sum_{j} C_{i,j}^{\mathrm{VF},n+1}(Q^{2}/m_{H}^{2}) \otimes f_{j}^{n+1}(Q^{2}) \\ &\equiv \sum_{j,k} C_{i,j}^{\mathrm{VF},n+1}(Q^{2}/m_{H}^{2}) \otimes A_{jk}(Q^{2}/m_{H}^{2}) \otimes f_{k}^{n}(Q^{2}) \end{aligned}$$

$$\Rightarrow \quad C_{i,k}^{\text{FF},n}(Q^2/m_H^2) = \sum_j C_{i,j}^{\text{VF},n+1}(Q^2/m_H^2) \otimes A_{jk}(Q^2/m_H^2)$$

• But $C_{i,j}^{VF,n_f,(m)}$ only uniquely defined in massless limit \Rightarrow ambiguous up to $\mathcal{O}(m_H^2/Q^2)$ terms (can redistribute between orders).

Introduction Heavy quarks Inclusive jets OCOOCO PDF uncertainties PDFs and alphaS Summary OCOOCOOCO

Choice of GM-VFNS by MRST/MSTW

- MRST 1998–2004 used the Thorne–Roberts (TR) scheme [hep-ph/9709442]: demand $\partial F_2^H / \partial \ln Q^2$ continuous.
- PDFs are discontinuous at NNLO in a VFNS [Buza et al. '96]:

$$f_{j/p}^{n_f+1}(x,m_H^2) = f_{j/p}^{n_f}(x,m_H^2) + \alpha_5^2 \sum_k A_{jk}(x) \otimes f_{k/p}^{n_f}(x,m_H^2),$$

but neglected in MRST 2001-2004 NNLO analyses.

- Structure functions at NNLO are then discontinuous in ZM-VFNS, but should be continuous in GM-VFNS. Original TR scheme technically difficult to implement at NNLO.
- Instead, R. Thorne [hep-ph/0601245] redefined simpler GM-VFNS (denoted TR') for use up to NNLO. Adopted elements of "ACOT(χ)" (→ talk by F. Olness):

$$C_{2,HH}^{VF,n_f,(m)}(z,Q^2/m_H^2) = C_{2,HH}^{ZM,n_f,(m)}(z/x_{max})$$

- Maintain continuity at $Q^2 = m_H^2$ by freezing term with highest power of α_S for $Q^2 < m_H^2$ when moving above m_H^2 .
- ACOT-type schemes instead use same order of α_S for *n* and (n + 1)-flavors, e.g. $F_2^H = 0$ at LO for $Q^2 < m_H^2$.

- Massive $\mathcal{O}(\alpha_S^3)$ NC coefficient functions unknown, but needed for GM-VFNS at NNLO.
- Model [Thorne '06] using known leading threshold logarithms [Laenen, Moch '99] and leading ln(1/x) terms [Catani, Ciafaloni, Hautmann '91]. Variation in free parameters does not lead to a large change.
- Massive $\mathcal{O}(\alpha_{S}^{2})$ CC coefficient functions unknown, but needed for GM-VFNS at NLO (important for s, \bar{s} determination from CCFR/NuTeV $\nu N \rightarrow \mu^{+}\mu^{-}X$ data).
- Model by modifying O(α₅²) NC contributions for different threshold behaviour. More sophisticated modeling in MSTW 2008. No attempt made to model O(α₅³) CC contribution needed at NNLO.

Impact of consistent GM-VFNS at NNLO

MRST 2006 NNLO [arXiv:0706.0459]

- First implementation of TR' scheme.
- Increase in low-x PDFs when discontinuities included.
- σ_{W,Z} at the LHC sensitive to light sea-quark PDFs at x ~ 0.006 (for y = 0) ⇒ σ_{W,Z} increase by 6%. A correction, not an *uncertainty*.
- From CTEQ6.1 NLO (ZM-VFNS) to CTEQ6.5 NLO (GM-VFNS): 8% increase in σ_{W,Z} at LHC. A correction, not an *uncertainty*.

- Change $TR \rightarrow TR'$ allows study of scheme dependence at NLO.
- MRST 2004 (TR) and MRST 2006 (TR') fits use same data.

- Nearly 3% increase in σ_{W,Z} at the LHC at NLO. Genuine theory uncertainty: should decrease going to higher orders.
- An uncertainty, not a correction at NLO.

Introduction
ocoHeavy quarks
ocococoInclusive jets
ocococoPDF uncertainties
ocococoPDFs and alphaS
ococococoSummary
ocPath to NNLO evolution in global PDF analysis

MRST 2001/2002 : approximate NNLO splitting [van Neerven, Vogt '00]. MRST 2004 : exact NNLO splitting [Moch, Vermaseren, Vogt '04]. MRST 2006 : added discontinuities at $Q^2 = m_H^2$ [Buza *et al.* '96]:

$$f_{j/p}^{n_f+1}(x,m_H^2) = f_{j/p}^{n_f}(x,m_H^2) + \alpha_S^2 \sum_k A_{jk}(x) \otimes f_{k/p}^{n_f}(x,m_H^2),$$

with TR' GM-VFNS for structure functions [Thorne '06]. MSTW 2008 : minor refinements to NNLO evolution code:

- added perturbative NNLO generation of $q \neq \bar{q}$ (very small).
- improved definition of α_s (MRST form unconventional).
- evolution checked against public PEGASUS [Vogt '04] and HOPPET [Salam, Rojo '08] codes for fitted input PDFs.

 Introduction
 Heavy quarks
 Inclusive jets
 PDF uncertainties
 PDFs and alphaS
 Summary

 000
 0000000
 0000000
 0000000
 00000000
 0

 Treatment of jet data in MRST/MSTW analyses

MRST 2001–2006

- Fit six "pseudogluon" points at Q² = 2000 GeV² inferred from Tevatron Run I inclusive jet data.
- Comparison to actual jet data, calculated at LO with a K-factor, only made *after* the fit.

MSTW 2008

- Fit to Tevatron Run II and HERA DIS inclusive jet data.
- Complete treatment of correlated systematic errors.
- Use FASTNLO code [Kluge, Rabbertz, Wobisch '06] to calculate NLO cross sections exactly during the fit.
- Full NNLO $\hat{\sigma}_{ab}$ not yet known: include 2-loop threshold corrections [Kidonakis, Owens '00] for Tevatron jet data at NNLO and exclude HERA DIS jet data.

[Data: hep-ex/0701051]

CDF Run II inclusive jet data, χ^2 = 56 for 76 pts.

 $D \oslash$ Run II inclusive jet data (cone, R = 0.7) MSTW 2008 NLO PDF fit ($\mu_{R} = \mu_{F} = p_{T}^{\text{JET}}$), $\chi^{2} = 114$ for 110 pts.

[Data: arXiv:0802.2400]

• Run II jet data prefer smaller gluon distribution at high x.

Highlighted numbers indicate χ^2 values for data sets explicitly included in various NLO global fits:

CDFI	DØI	$CDFII(k_T)$	DØII	$\Delta \chi^2_{\rm non-jet}$	$\alpha_{S}(M_{Z}^{2})$
(33 pts.)	(90 pts.)	(76 pts.)	(110 pts.)	(2513 pts.)	
53	119	64	117	0	0.1197
51	48	132	180	9	0.1214
56	110	56	114	2	0.1202
53	85	68	117	1	0.1204

- Fit to Run I jets \Rightarrow description of Run II jets bad.
- Fit to Run II jets \Rightarrow description of Run I jets bad.
- Fit neither \Rightarrow similar description as fitting Run II only.
- **Summary**: Some inconsistency between Run I and Run II jets. Run II jets slightly more consistent with rest of data.

• Smaller high-x gluon than previous MRST and CTEQ fits.

 Data favor less gluon at high x (MSTW 2008 over CTEQ6.6).

- NNLO trend similar to NLO: smaller 2008 gluon at high x, larger 2008 gluon at low x (momentum sum rule).
- $\alpha_S(M_Z^2) = 0.1191 (2006)$ $\rightarrow 0.1171 (MSTW 2008)$

 Higgs cross sections smaller at Tevatron with 2008 PDFs (→ talk by D. de Florian).
 Introduction
 Heavy quarks
 Inclusive jets
 PDF uncertainties
 PDFs and alphaS
 Summary

 000
 0000000
 0000000
 0000000
 00000000
 0

Uncertainties in global PDF analysis

"Theoretical" errors

- *Examples:* input parameterisation form, neglected higher-order and higher-twist QCD corrections, electroweak corrections, choice of cuts, nuclear corrections, heavy flavor treatment.
- Difficult to quantify *a priori*. Often correction only known after an improved treatment/calculation is available.

"Experimental" errors

- If all the above sources of "theoretical" errors are fixed, how do we propagate the experimental uncertainties on the fitted data points through to the PDF uncertainties?
- Generally use the Hessian method [Pumplin et al. '01]: diagonalize covariance matrix from the fit and produce ± eigenvector PDF sets displaced from best-fit PDF set.

Parameter-fitting criterion

- $T^2 = 1$ for 68% (1- σ) C.L., $T^2 = 2.71$ for 90% C.L.
- In practice: minor inconsistencies between fitted data sets, and unknown experimental and theoretical uncertainties, so not appropriate for global PDF analysis.

Hypothesis-testing criterion (proposed by CTEQ)

- Much weaker: treat PDF sets obtained from eigenvectors of covariance matrix as alternative hypotheses.
- Determine T^2 from the criterion that each data set should be described within its 90% C.L. limit. Very roughly, a "good" fit has $\chi^2 \simeq N_{\rm pts.} \pm \sqrt{2N_{\rm pts.}}$ for each data set.
- CTEQ: $T^2 = 100$ for 90% C.L. limit, MRST: $T^2 = 50$.

Introduction Heavy quarks Inclusive jets 000000 PDF uncertainties 00000000 Summary 0000000 PDFs and alphaS 00000000 0

- Tolerance in "+" direction provided by E866/NuSea pp DY data.
- Tolerance in "-" direction provided by NuTeV $\nu N xF_3$ data.

MSTW 2008 NLO PDF fit

Eigenvector number

- Fit to reduced dataset comprising 589 DIS data points, cf. 2699 data points in global fit.
- Errors given by T² = 1 don't overlap ⇒ inconsistent data sets included in global fit.
- Dynamic tolerance $T^2 > 1$ accommodates mildly inconsistent data sets.

Uncertainties on α_S in global PDF analysis

[MSTW, in preparation]

- PDFs (including uncertainty sets) are determined for a fixed value of α_S ⇒ use same value in cross section calculations.
- In MRST/MSTW analyses, α_S is fitted, then **fixed** at the best-fit value for final error propagation.

Problems:

- **1** What is the (experimental) error on α_s ?
- 2 How to include this error in cross section calculations?

Solutions:

- **1** Apply same method used to determine the tolerance for each eigenvector to determine the experimental error on $\alpha_S(M_Z^2)$.
- 2 Then generate best-fit and eigenvector PDF sets for different fixed α_S values for use in calculations of cross sections.

• Lower limit on $\alpha_s(M_Z^2)$ provided by SLAC F_2^{ed} data.

- Additional theory uncertainty ($\sim |\rm NNLO-NLO|=\pm 0.003).$
- cf. PDG world average value of $\alpha_S(M_Z^2) = 0.1176 \pm 0.002$.

- Correlation at low x, anticorrelation at high x.
- PDF uncertainties smaller when α_S shifted to limits.

• Two effects: (i) correlation of quark distributions with α_S at LHC (less correlation at Tevatron), (ii) higher-order corrections.

Parton distribution functions and α_S

- Anticorrelation at low x: HERA ∂F₂/∂ ln Q² ~ α₅ g.
- Correlation at high x to maintain momentum sum rule.

 Anticorrelation of gg luminosity with α_S at LHC cancels out (almost exactly) correlation due to higher-order corrections.

6

4 2

0

-2 -4 -6

-8

-10^l

100

68% C.L. uncertainties

150

200

250

M_u (GeV)

300

PDF + α_{s}

• Enhanced "PDF+ α_{s} " uncertainty compared to "PDF only" uncertainty, particularly at the LHC.

6

2 0

-2

-6

-8

-10^L

100

150

200

250

M_L (GeV)

300

- Mostly gluon-initiated at low $p_T \Rightarrow$ correlated with α_S .
- Mostly quark-initiated at high $p_T \Rightarrow$ anticorrelated with α_S .

Introduction	Heavy quarks	Inclusive jets	PDF uncertainties	PDFs and alphaS	Summary
000	00000000	0000000		000000000	•
Summary	<i>'</i>				

- MSTW 2008 (LO, NLO, NNLO) PDF fits [arXiv:0901.0002] are the most comprehensive to date: supersede MRST sets.
- Pre-2006 MRST *NNLO* PDF sets should be considered obsolete due to incomplete heavy flavor treatment.
- Almost all necessary NNLO processes are now known. Exceptions: inclusive jets, massive $\mathcal{O}(\alpha_5^3)$ NC and $\mathcal{O}(\alpha_5^2)$ CC DIS.
- **Tevatron Run II jets** prefer smaller high-x gluon than Run I: impact on Higgs cross sections at Tevatron.
- **Improved** "dynamic tolerance" controlling propagation of experimental errors through to PDF uncertainties.
- Now possible to consistently calculate combined "PDF+α_S" uncertainty on cross sections: additional sets public soon.

Backup •00000

Comparison to CTEQ6.6 NLO

Graeme Watt

Backup ○●○○○○

Comparison to MRST 2006 NNLO

Alternative approach: NNPDF Collaboration

NNPDF Collaboration: R. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. Latorre, A. Piccione, J. Rojo, M. Ubiali

MSTW approach [arXiv:0901.0002]

Parametrization Minimisation Error propagation Application $xf_{a/p} \sim A_a x^{\Delta_a}(1-x)^{\eta_a}(1+\epsilon_a\sqrt{x}+\gamma_a x)$ Non-linear least-squares (Marquardt method) Hessian method with dynamical tolerance Use best-fit and 40 eigenvector PDF sets

NNPDF approach [arXiv:0808.1231]

Parametrization Minimisation Error propagation Application Neural network (37 free parameters per PDF) Genetic algorithm (stop before overlearning) Generate $N_{\rm rep} \sim O(1000)$ MC data replicas Calculate average and s.d. over $N_{\rm rep}$ PDF sets

Graeme Watt

Backup

First results from NNPDF1.0 [arXiv:0808.1231]

- Fit restricted set of only DIS structure function data (SLAC, BCDMS, NMC, H1, ZEUS, CHORUS).
- Inadequate treatment of heavy quarks (ZM-VFNS).

• Up valence: relative data set normalizations fitted by MSTW.

• Up antiquark: NNPDF1.0 negative by \sim 2- σ , no Drell–Yan.

Backup ○○○○●○

Uncertainties for MSTW 2008 and NNPDF1.0

• NNPDF1.0 has fixed $s = \overline{s} = (\overline{u} + \overline{d})/4$ at $Q_0^2 = 2 \text{ GeV}^2$.

- NNPDF1.1 [arXiv:0811.2288]: free strangeness but no νN dimuon data to constrain, so huge PDF uncertainties.
- Conclusion: NNPDF approach looks promising, but PDFs not yet directly comparable to those from standard approach.

Backup

Parametrization dependence of low-x gluon

- PDFs lose probabilistic interpretation beyond LO.
- Negative small-x gluon distribution preferred at low scales.
- MRST/MSTW parametrize as:

$$\begin{aligned} xg(x, Q_0^2) &= xg_1(x, Q_0^2) + xg_2(x, Q_0^2) \sim A_g \, x^{\delta_g} + A_{g'} \, x^{\delta_{g'}} \\ \Rightarrow \Delta g(x, Q_0^2) \sim \pm g_1(x, Q_0^2) \, \Delta \delta_g \, \ln(1/x) \pm g_2(x, Q_0^2) \, \Delta \delta_{g'} \, \ln(1/x) \end{aligned}$$

• Other groups (CTEQ, Alekhin) parametrize with a valence-like $xg(x, Q_0^2) \sim x^{\delta_g}$: less freedom at small x.