Proposal for an improved " M_{X} method"

Graeme Watt

DESY Hamburg

ZEUS Diffractive Review Meeting 23rd November 2005

(1) Collinear factorisation in DDIS
(2) Motivation for an improved " M_{X} method"
(3) Reminder of the " M_{X} method"
(4) Regge theory of DDIS
(5) The " $\left(M_{X}^{2}+Q^{2}\right)$ method"
(6) The " $x_{\mathbb{P}}$ method"
(7) Summary

Collinear factorisation in DDIS

- Pomeron structure is analogous to photon structure: both resolved and direct contributions.
- $Q^{2} \gg \ldots \gg \mu^{2} \gg \ldots \gg \mu_{0}^{2} \sim 1 \mathrm{GeV}^{2}$
- Direct Pomeron contribution responsible for exclusive diffractive processes, but also contributes to inclusive diffraction.

DDIS structure function: $F_{2}^{\mathrm{D}(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=\underbrace{\sum_{a=q, g} C_{2, a} \otimes a^{\mathrm{D}}}_{\text {Resolved Pomeron }}+\underbrace{C_{2, \mathbb{P}}}_{\text {Direct Pomeron }}$

$$
\text { DPDF evolution: } \frac{\partial a^{\mathrm{D}}\left(x_{\mathbb{P}}, z, Q^{2}\right)}{\partial \ln Q^{2}}=\underbrace{\sum_{a^{\prime}=q, g} P_{a a^{\prime}} \otimes a^{\prime \mathrm{D}}}_{\text {DGLAP term }}+\underbrace{P_{\mathrm{aP}}(z) f_{\mathbb{P}}\left(x_{\mathbb{P}} ; Q^{2}\right)}_{\text {Inhomogeneous term }}
$$

pQCD Pomeron flux factor: $f_{\mathbb{P}}\left(x_{\mathbb{P}} ; Q^{2}\right)=\frac{1}{x_{\mathbb{P}} B_{D}}\left[R_{g} \frac{\alpha_{S}\left(Q^{2}\right)}{Q} x_{\mathbb{P}} g\left(x_{\mathbb{P}}, Q^{2}\right)\right]^{2}$

Motivation for an improved " M_{X} method"

- Diffractive gluon distribution sensitive to Q^{2} dependence of DDIS data:

- See HERA-LHC proceedings.
- H1 LRG and ZEUS M_{X} data give very different DPDFs due to different Q^{2} dependence of data sets.
- From results shown at last collaboration meeting:
- New ZEUS LRG data also seem to have different Q^{2} dependence than published ZEUS M_{X} data.
- New ZEUS M_{X} (high Q^{2}) data seem to be compatible with published ZEUS M_{X} data.

Possible (tentative) explanations:
(1) Amount of proton dissociation is Q^{2} dependent?

But would be difficult to explain theoretically.
(2) Significant non-diffractive contribution to LRG events (even at small $x_{\mathbb{P}}$)? But should be exponentially suppressed compared to diffractive contribution.
(3) Unjustified approximations made in " M_{X} method" used to subtract non-diffractive events?

Motivation for an improved " M_{X} method"

- Diffractive gluon distribution sensitive to Q^{2} dependence of DDIS data:

- See HERA-LHC proceedings.
- H1 LRG and ZEUS M_{X} data give very different DPDFs due to different Q^{2} dependence of data sets.
- From results shown at last collaboration meeting:
- New ZEUS LRG data also seem to have different Q^{2} dependence than published ZEUS M_{X} data.
- New ZEUS M_{X} (high Q^{2}) data seem to be compatible with published ZEUS M_{X} data.
Possible (tentative) explanations:
(1) Amount of proton dissociation is Q^{2} dependent? But would be difficult to explain theoretically.

2. Significant non-diffractive contribution to LRG events (even at small $x_{\mathbb{L}}$)?
(3) Unjustified approximations made in " M_{X} method" used to subtract non-diffractive events?

Reminder of the " M_{X} method"

- Used in three ZEUS papers [Z. Phys. C 70 (1996) 391; Eur. Phys. J. C 6 (1999) 43; Nucl. Phys. B 713 (2005) 3] + analysis in progress.
- Subtract non-diffractive events in each $\left(W, Q^{2}\right)$ bin by fitting (in a limited range of $\ln M_{X}^{2}$):

$$
\frac{\mathrm{d} N}{\mathrm{~d} \ln M_{X}^{2}}=D+\underbrace{c \exp \left(b \ln M_{X}^{2}\right)}_{\text {non-diffractive }}
$$

ZEUS

Regge theory of DDIS

- Replace pQCD ladders by "effective" Regge trajectories, e.g.

- But don't expect the "effective" trajectories to be universal, e.g. "effective" $\alpha_{\mathbb{P}}(0)$ greater than value for "soft" Pomeron and depends on Q^{2} [NPB 713 (2005) 3].
- For $W^{2} \gg M_{X}^{2}$ and $Q^{2} \gg t$, consider triple Regge diagrams [see Barone \& Predazzi, High-energy particle diffraction, Chap. 10.5]:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln x_{\mathbb{P}}} & =\frac{\left|g_{\mathbb{P}}(\bar{t})\right|^{2}}{16 \pi^{2}} x_{\mathbb{P}}^{2-2 \alpha_{\mathbb{P}}(\bar{t})}\left[\mathcal{A}_{\mathbb{P} \mathbb{P}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{P}}(0)}+\mathcal{A}_{\mathbb{P} \mathbb{R} \mathbb{R}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{R}}(0)}\right] \\
& +\frac{\left|g_{\mathbb{R}}(\bar{t})\right|^{2}}{16 \pi^{2}} x_{\mathbb{P}}^{2-2 \alpha_{\mathbb{R}}(\bar{t})}\left[\mathcal{A}_{\mathbb{R} \mathbb{R} \mathbb{P}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{P}}(0)}+\mathcal{A}_{\mathbb{R} \mathbb{R} \mathbb{R}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{R}}(0)}\right],
\end{aligned}
$$

where $\alpha_{\mathbb{P}}(0) \approx 1.1-1.2, \alpha_{\mathbb{R}}(0) \lesssim 0.5$, and \bar{t} is some average value of t.

The " $\left(M_{X}^{2}+Q^{2}\right)$ method"

- Since $x_{\mathbb{P}}=\left(M_{X}^{2}+Q^{2}\right) /\left(W^{2}+Q^{2}\right)$ and $\beta=Q^{2} /\left(M_{X}^{2}+Q^{2}\right)$, rewrite as

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)} & =A_{\mathbb{P} \mathbb{P} P}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\mathbb{P} \mathbb{R}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\mathbb{R} \mathbb{R P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})} \\
& +A_{\mathbb{R} \mathbb{R} \mathbb{R}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})}
\end{aligned}
$$

- The " M_{X} method" assumes that $M_{X}^{2} \gg Q^{2}(\Rightarrow \beta \ll 1$, so $\mathbb{P P P} \mathbb{R}$ and $\mathbb{R} \mathbb{R} \mathbb{R}$ contributions are negligible), and $\alpha_{\mathbb{P}}(0) \approx \alpha_{\mathbb{P}}(\bar{t}) \approx 1$. Then

where $b=1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})$.
- More generally Iook at $\left(M_{k}^{2}+\Omega^{2}\right)$ distribution:

The " $\left(M_{X}^{2}+Q^{2}\right)$ method"

- Since $x_{\mathbb{P}}=\left(M_{X}^{2}+Q^{2}\right) /\left(W^{2}+Q^{2}\right)$ and $\beta=Q^{2} /\left(M_{X}^{2}+Q^{2}\right)$, rewrite as

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)} & =A_{\mathbb{P P P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\max }(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathcal{F}}(\overline{)}-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{(}(0)-2 \alpha_{a}(\bar{t})} \\
& +A_{\mathbb{R R P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})}
\end{aligned}
$$

- The " M_{X} method" assumes that $M_{X}^{2} \gg Q^{2}(\Rightarrow \beta \ll 1$, so $\mathbb{P} P \mathbb{R}$ and $\mathbb{R} \mathbb{R} \mathbb{R}$ contributions are negligible), and $\alpha_{\mathbb{P}}(0) \approx \alpha_{\mathbb{P}}(\bar{t}) \approx 1$. Then

$$
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln M_{X}^{2}}=D+c\left(M_{X}^{2}\right)^{b}=D+c \exp \left(b \ln M_{X}^{2}\right)
$$

where $b=1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})$.

- More generally, look at $\left(M_{x}^{2}+Q^{2}\right)$ distribution:

The " $\left(M_{X}^{2}+Q^{2}\right)$ method"

- Since $x_{\mathbb{P}}=\left(M_{X}^{2}+Q^{2}\right) /\left(W^{2}+Q^{2}\right)$ and $\beta=Q^{2} /\left(M_{X}^{2}+Q^{2}\right)$, rewrite as

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)} & =A_{\mathbb{P} \mathbb{P} P}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\mathbb{P} \mathbb{R}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{P}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{P}}(\bar{t})} \\
& +A_{\mathbb{R} \mathbb{R P P}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})} \\
& +A_{\mathbb{R} \mathbb{R} \mathbb{R}}(\bar{t})\left(W^{2}\right)^{2 \alpha_{\mathbb{R}}(\bar{t})-2}\left(M_{X}^{2}+Q^{2}\right)^{1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})}
\end{aligned}
$$

- The " M_{X} method" assumes that $M_{X}^{2} \gg Q^{2}(\Rightarrow \beta \ll 1$, so $\mathbb{P P R}$ and $\mathbb{R} \mathbb{R}$ contributions are negligible), and $\alpha_{\mathbb{P}}(0) \approx \alpha_{\mathbb{P}}(\bar{t}) \approx 1$. Then

$$
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln M_{X}^{2}}=D+c\left(M_{X}^{2}\right)^{b}=D+c \exp \left(b \ln M_{X}^{2}\right)
$$

where $b=1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{R}}(\bar{t})$.

- More generally, look at $\left(M_{X}^{2}+Q^{2}\right)$ distribution:

$$
\frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)}=\underbrace{c_{\mathbb{P}}\left(M_{X}^{2}+Q^{2}\right)^{-b_{\mathbb{P}}}}_{\text {diffractive }}+\underbrace{c_{\mathbb{R}}\left(M_{X}^{2}+Q^{2}\right)^{b_{\mathbb{R}}}}_{\text {non-diffractive }}
$$

where $-b_{\mathbb{P}} \leq 1+\alpha_{\mathbb{P}}(0)-2 \alpha_{\mathbb{P}}(\bar{t}) \approx-(0.1-0.2)$ and $b_{\mathbb{R}} \geq 1+\alpha_{\mathbb{R}}(0)-2 \alpha_{\mathbb{R}}(\bar{t}) \gtrsim 0.5$.

The " $x_{\mathbb{P}}$ method"

- The " $\left(M_{X}^{2}+Q^{2}\right)$ method" is better than the " M_{X} method", but it uses a combination of two powers of $\left(M_{X}^{2}+Q^{2}\right)$ to approximate a combination of four powers.
- Much more direct way of subtracting the non-diffractive contribution is to look at the $X_{\mathbb{P}}$ distribution:

$$
\begin{aligned}
& \begin{aligned}
& \frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln x_{\mathbb{P}}}=\frac{\left|g_{\mathbb{P}}(\bar{t})\right|^{2}}{16 \pi^{2}} x_{\mathbb{P}}^{2-2 \alpha_{\mathbb{P}}(\bar{t})}\left[\mathcal{A}_{\mathbb{P} P \mathbb{P}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{P}}(0)}+\mathcal{A}_{\mathbb{P} \mathbb{R}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{R}}(0)}\right] \\
&+\frac{\left|g_{\mathbb{R}}(\bar{t})\right|^{2}}{16 \pi^{2}} x_{\mathbb{P}}^{2-2 \alpha_{\mathbb{R}}(\bar{t})}\left[\mathcal{A}_{\mathbb{R} \mathbb{R} \mathbb{P}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{P}}(0)}+\mathcal{A}_{\mathbb{R} \mathbb{R} \mathbb{R}}\left(Q^{2}\right) \beta^{1-\alpha_{\mathbb{R}}(0)}\right] \\
& \Rightarrow \frac{\mathrm{d} \sigma_{\gamma^{*} p}}{\mathrm{~d} \ln x_{\mathbb{P}}}=\underbrace{c_{\mathbb{P}}\left(x_{\mathbb{P}}\right)^{-b_{\mathbb{P}}}}_{\text {diffractive }}+\underbrace{c_{\mathbb{R}}\left(x_{\mathbb{P}}\right)^{b_{\mathbb{R}}}}_{\text {non-diffractive }},
\end{aligned} \\
& \text { where }-b_{\mathbb{P}}=2-2 \alpha_{\mathbb{P}}(\bar{t}) \approx-(0.2-0.4) \text { and } b_{\mathbb{R}}=2-2 \alpha_{\mathbb{R}}(\bar{t}) \gtrsim 1 .
\end{aligned}
$$

- In most general case, fit four parameters $c_{\{\mathbb{P}, \mathbb{R}\}} \geq 0$ and $b_{\{\mathbb{P}, \mathbb{R}\}} \geq 0$ separately in each $\left(\beta, Q^{2}\right)$ bin, in some limited range of $x_{\mathbb{P}}$.

Summary

- " M_{X} method" justified if $M_{X}^{2} \gg Q^{2}$ and $\alpha_{\mathbb{P}}(0)=1$:

$$
\frac{\mathrm{d} N}{\mathrm{~d} \ln M_{X}^{2}}=\underbrace{D}_{\text {diffractive }}+\underbrace{c\left(M_{X}^{2}\right)^{b}}_{\text {non-diffractive }}
$$

- " $\left(M_{X}^{2}+Q^{2}\right)$ method" more general:

$$
\frac{\mathrm{d} N}{\mathrm{~d} \ln \left(M_{X}^{2}+Q^{2}\right)}=\underbrace{c_{\mathbb{P}}\left(M_{X}^{2}+Q^{2}\right)^{-b_{\mathbb{P}}}}_{\text {diffractive }}+\underbrace{c_{\mathbb{R}}\left(M_{X}^{2}+Q^{2}\right)^{b_{\mathbb{R}}}}_{\text {non-diffractive }}
$$

- " $x_{\mathbb{P}}$ method" even better:

$$
\frac{\mathrm{d} N}{\mathrm{~d} \ln x_{\mathbb{P}}}=\underbrace{c_{\mathbb{P}}\left(x_{\mathbb{P}}\right)^{-b_{\mathbb{P}}}}_{\text {diffractive }}+\underbrace{c_{\mathbb{R}}\left(x_{\mathbb{P}}\right)^{b_{\mathbb{R}}}}_{\text {non-diffractive }}
$$

- More details given in write-up uploaded to ZEMS.

