Introduction DI	ffractive PDFs 0	seneralised PDFs	Diffractive PDFs Redux	Unintegrated PDFs	Summary

Diffractive, generalised and unintegrated PDFs

Graeme Watt

University College London

PDF4LHC workshop, CERN, Geneva 23rd February 2008

Introduction	Diffractive PDFs	Generalised PDFs	Diffractive PDFs Redux	Unintegrated PDFs	Summary
•	0000000	00	00000000	0000000	O
Introdu	ction				

- Most effort has been concentrated on determining "standard" PDFs for use in fixed-order (usually NLO, $\overline{\mathrm{MS}}$) collinear factorisation calculations of inclusive processes.
- (This is the cleanest theoretical situation, but is not necessarily consistent with calculations in MC generators.)
- This talk: discuss some "non-standard" PDFs used for specific types of processes: diffractive, generalised and unintegrated.
- (Won't discuss polarised, nuclear, multiparton, ..., PDFs.)
- See also talk by K. Kutak for a different approach to unintegrated PDFs.

Introduction to diffraction

- Diffractive processes characterised by a Large Rapidity Gap.
- Exchange of vacuum quantum numbers at high energies
 (≡ "Pomeron" exchange). What is the Pomeron (ℙ)?

"Soft" processes ($\sim 1~{\rm fm})$

- Use Regge theory.
- $\sigma_{\mathrm{tot}} \sim s^{\alpha_{\mathbb{P}}(0)-1}$
- $\mathrm{d}\sigma_{\mathrm{el}}/\mathrm{d}t \sim s^{2[\alpha_{\mathbb{P}}(t)-1]}$
- Donnachie–Landshoff fit [hep-ph/9209205]:
 α_P(0) = 1.08, α'_P = 0.25 GeV⁻²
- *Effective:* includes multi-P.

'Hard" processes ($\gtrsim 1~{ m GeV})$

- Use perturbative QCD.
- $\mathbb{P} \sim \mathsf{DGLAP}/\mathsf{BFKL}$ ladder \sim usual gluon density.
- Appears in cross section for inclusive processes.
- Appears in amplitude for diffractive processes.
 ⇒ Appears squared in the diffractive cross section.

Introduction to diffraction

- Diffractive processes characterised by a Large Rapidity Gap.
- Exchange of vacuum quantum numbers at high energies
 (≡ "Pomeron" exchange). What is the Pomeron (ℙ)?

"Soft" processes ($\sim 1~{\rm fm})$

- Use Regge theory.
- $\sigma_{\mathrm{tot}} \sim s^{\alpha_{\mathbb{P}}(0)-1}$
- $\mathrm{d}\sigma_{\mathrm{el}}/\mathrm{d}t \sim s^{2[\alpha_{\mathbb{P}}(t)-1]}$
- Donnachie–Landshoff fit [hep-ph/9209205]:
 α_P(0) = 1.08, α'_P = 0.25 GeV⁻²
- *Effective:* includes multi-P.

"Hard" processes ($\gtrsim 1~{ m GeV})$

- Use perturbative QCD.
- $\mathbb{P} \sim \text{DGLAP}/\text{BFKL}$ ladder \sim usual gluon density.
- Appears in cross section for inclusive processes.
- Appears in **amplitude** for diffractive processes.
 - \Rightarrow Appears **squared** in the diffractive cross section.

Introduction Diffractive PDFs Generalised PDFs Diffractive PDFs Redux 000000 Inclusive diffractive DIS (DDIS) kinematics

• $q^2 \equiv -Q^2$ (photon virtuality) • $W^2 \equiv (q+p)^2 \simeq -Q^2 + 2p \cdot q$ \Rightarrow $x_{\mathrm{Bj}} \equiv rac{Q^2}{2 p \cdot q} \simeq rac{Q^2}{Q^2 + W^2}$ (at LO, fraction of proton's momentum carried by struck quark)

•
$$t \equiv (p-p')^2 \simeq 0$$
, $(p-p') \simeq x_{\mathbb{P}} p$

• $\beta \equiv \frac{x_{\rm Bj}}{x_{\rm P}} \simeq \frac{Q^2}{Q^2 + M_{\nu}^2}$ (at LO, fraction of Pomeron's momentum carried by struck quark)

Leading-twist collinear factorisation in DDIS

Diffractive structure function (integrated over t):

$$F_2^{\mathrm{D}(3)}(\mathbf{x}_{\mathbb{P}},\beta,Q^2) = \sum_{a=q,g} \beta \int_{\beta}^{1} \frac{\mathrm{d}z}{z} C_{2,a}\left(\frac{\beta}{z}\right) f_{a/p}^{\mathrm{D}}(\mathbf{x}_{\mathbb{P}},z,\mu_F^2)$$
$$= \sum_{q} e_q^2 \beta f_{q/p}^{\mathrm{D}}(\mathbf{x}_{\mathbb{P}},\beta,\mu_F^2) \quad \text{at LO.}$$

- C_{2,a} are the **same** coefficient functions as in inclusive DIS.
- Diffractive PDFs $f_{a/p}^{D}$ satisfy DGLAP evolution.
- Proven by J. Collins [hep-ph/9709499] to hold up to power-suppressed corrections.

Introduction

Diffractive PDFs Generalised PDFs Diffractive PDFs Redux

Unintegrated PDFs

Regge factorisation in DDIS

0000000

Ingelman, Schlein [PLB 152 (1985) 256]. Assume Regge factorisation:

$$f^{\mathrm{D}}_{\mathsf{a}/\mathsf{p}}(x_{\mathbb{P}}, z, \mu_F^2) = f_{\mathbb{P}/\mathsf{p}}(x_{\mathbb{P}}) f_{\mathsf{a}/\mathbb{P}}(z, \mu_F^2)$$

- $f_{\mathbb{P}/p}(x_{\mathbb{P}})$ is the Pomeron flux factor. Take from Regge phenomenology.
- $f_{a/\mathbb{P}}(z, \mu_F^2)$ are the Pomeron PDFs DGLAP-evolved from an input scale μ_0^2 up to the factorisation scale μ_F^2 of the hard scattering process.

Paradox: hard scattering, but assumption of soft Pomeron exchange due to DGLAP strong-ordering in virtualities: $\mu_F^2 \gg \ldots \gg \mu^2 \gg \ldots \gg \mu_0^2 \sim 1 \text{ GeV}^2.$

H1 2006/7 analysis of diffractive PDFs

Generalised PDFs

Pomeron flux factor

Diffractive PDFs

000

$$f_{\mathbb{P}/p}(x_{\mathbb{P}}) = \int_{t_{\mathrm{cut}}}^{t_{\mathrm{min}}} \mathrm{d}t \; \mathrm{e}^{B_{\mathbb{P}} t} \; x_{\mathbb{P}}^{1-2lpha_{\mathbb{P}}(t)},$$

Diffractive PDFs Redux

- Fix $\alpha'_{\mathbb{P}} = 0.06^{+0.19}_{-0.06} \text{ GeV}^{-2}$ and $B_{\mathbb{P}} = 5.5^{+0.7}_{-2.0} \text{ GeV}^{-2}$ from H1 leading-proton data [hep-ex/0606003].
- Treat $\alpha_{\mathbb{P}}(0)$ as a free parameter.

Input Pomeron PDFs

$$z f_{\mathsf{a}/\mathbb{P}}(z,\mu_0^2) = A_{\mathsf{a}} z^{B_{\mathsf{a}}} (1-z)^{\mathcal{C}_{\mathsf{a}}}$$

- Evolve from $\mu_0^2\simeq 2~{\rm GeV^2}$ with usual NLO DGLAP evolution.
- No momentum sum rule: Pomeron is not a particle.
- $u = d = s = \overline{u} = \overline{d} = \overline{s}$, so only singlet and gluon.

Introduction

H1 2006/7 extraction of diffractive PDFs

- Fit to inclusive DDIS data points with $M_X \ge 2$ GeV and $Q^2 \ge 8.5$ GeV² [hep-ex/0606004].
- Also simultaneous fit to inclusive DDIS and DDIS dijets [0708.3217].

	$lpha_{\mathbb{P}}(0)$	$zf_{g/\mathbb{P}}(z,\mu_0^2)$	$\chi^2_{ m DDIS}/N_{ m pts.}$	$\chi^2_{ m dijet}/N_{ m pts.}$
H1 2006 Fit A	1.118 ± 0.007	$A_g \left(1-z\right)^{C_g}$	158/190	_
H1 2006 Fit B	1.111 ± 0.007	A_g	164 /190	—
H1 2007 Jets Fit	1.104 ± 0.007	$A_g z^{B_g} (1-z)^{C_g}$	<mark>169</mark> /190	27/36

• Comments:

- 1 Cut on $Q^2 \ge 8.5 \text{ GeV}^2$ required to achieve stability.
- 2 α_ℙ(0) values larger than values for soft Pomeron. No reason to expect universality of these values.
- **3** Fit B would be excluded if $\Delta \chi^2 = 1$ is taken literally.
- ④ χ^2 of inclusive DDIS data deteriorates when dijet data are added: suggests some inconsistency within this framework.

H1 2006/7 extraction of diffractive PDFs

- Fit to inclusive DDIS data points with $M_X \ge 2$ GeV and $Q^2 \ge 8.5$ GeV² [hep-ex/0606004].
- Also simultaneous fit to inclusive DDIS and DDIS dijets [0708.3217].

	$lpha_{\mathbb{P}}(0)$	$zf_{g/\mathbb{P}}(z,\mu_0^2)$	$\chi^2_{ m DDIS}/N_{ m pts.}$	$\chi^2_{ m dijet}/N_{ m pts.}$
H1 2006 Fit A	1.118 ± 0.007	$A_g \left(1-z\right)^{C_g}$	158/190	_
H1 2006 Fit B	1.111 ± 0.007	A_{g}	164/190	—
H1 2007 Jets Fit	1.104 ± 0.007	$A_g z^{B_g} (1-z)^{C_g}$	<mark>169</mark> /190	27/36

• Comments:

- 1 Cut on $Q^2 \ge 8.5 \text{ GeV}^2$ required to achieve stability.
- 2 a_ℙ(0) values larger than values for soft Pomeron.
 No reason to expect universality of these values.
- **3** Fit B would be excluded if $\Delta \chi^2 = 1$ is taken literally.

Diffractive PDFs Generalised PDFs Diffractive PDFs Redux Introduction 000000 H1 2006/7 extraction of diffractive PDFs

z

Introduction Diffractive PDFs Generalised PDFs Diffractive PDFs Redux Unintegrated PDFs Summar 0 0000000 ●0 0000000 0000000 0

Collinear factorisation for exclusive hard processes

Collins, Frankfurt, Strikman [hep-ph/9611433]:

$$\mathcal{A}(\gamma_L^* p \to V p) = \sum_{i,j} \int_0^1 \mathrm{d}z \int \mathrm{d}x \ \overbrace{f_{i/p}(x, x', t, \mu^2)}^{\text{Generalised PDF}} \ \overbrace{H_{ij}(x, x', z, Q^2, \mu^2)}^{\text{Hard scattering}} \ \overbrace{\Phi_j^V(z, \mu^2)}^{\text{Meson dist. amp.}}$$

+ power-suppressed corrections.

- Valid also for large x, not just in the diffractive region x ≪ 1.
- Generalised (a.k.a. skewed, off-diagonal) PDFs reduce to usual PDFs in limit of x = x' and t = 0.
- Fourier transform from ∆ (where t = -|∆|²) to impact parameter b ⇒ spatial distribution of partons in transverse plane.

Progress in determination of generalised PDFs

- NLO corrections for γ^{*}_Lp → ρp are huge at small-x [Diehl, Kugler, 0708.1121]. Small-x resummation needed. Important power corrections due to parton transverse momenta.
- Situation better for γ^{*}p → γ p (deeply virtual Compton scattering): known to NNLO [Kumerički, Müller, Passek-Kumerički, hep-ph/0703179].
- "Global" analysis of generalised PDFs still a long way off. Generally rely on models/approximations to relate generalised PDFs to usual PDFs, e.g. for small |t| and x' « x « 1:

$$f_{g/p}(x, x', t, \mu^2) = \exp(B_D t/2) R_g(x, \mu^2) x g(x, \mu^2),$$

with t-slope B_D taken from HERA data and

$$R_g(x,\mu^2) = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)},$$

assuming $xg(x,\mu^2) \sim x^{-\lambda}$ [Shuvaev et al., hep-ph/9902410].

- NLO corrections for γ^{*}_Lp → ρp are huge at small-x [Diehl, Kugler, 0708.1121]. Small-x resummation needed. Important power corrections due to parton transverse momenta.
- Situation better for γ*p → γp (deeply virtual Compton scattering): known to NNLO [Kumerički, Müller, Passek-Kumerički, hep-ph/0703179].
- "Global" analysis of generalised PDFs still a long way off. Generally rely on models/approximations to relate generalised PDFs to usual PDFs, e.g. for small |t| and x' << x << 1:

$$f_{g/p}(x, x', t, \mu^2) = \exp(B_D t/2) R_g(x, \mu^2) xg(x, \mu^2),$$

with *t*-slope B_D taken from HERA data and

$$R_g(x,\mu^2) = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)},$$

assuming $xg(x, \mu^2) \sim x^{-\lambda}$ [Shuvaev et al., hep-ph/9902410].

Perturbative Pomeron contribution to inclusive DDIS

Martin, Ryskin, G.W. [hep-ph/0406224, hep-ph/0504132, hep-ph/0609273]

• Hard Pomeron responsible for exclusive diffractive processes at HERA also contributes to inclusive DDIS.

 Contribution to diffractive PDFs is calculable in terms of the generalised PDFs:

$$f_{a/\rho}^{\mathrm{D}}(\boldsymbol{x}_{\mathbb{P}}, \boldsymbol{z}, \boldsymbol{\mu}_{F}^{2}) = \int_{\mu_{0}^{2}}^{\mu_{F}^{2}} \frac{\mathrm{d}\mu^{2}}{\mu^{2}} f_{\mathbb{P}/\rho}(\boldsymbol{x}_{\mathbb{P}}; \boldsymbol{\mu}^{2}) f_{a/\mathbb{P}}(\boldsymbol{z}, \boldsymbol{\mu}_{F}^{2}; \boldsymbol{\mu}^{2})$$

• Perturbative Pomeron flux factor:

$$f_{\mathbb{P}/p}(\mathbf{x}_{\mathbb{P}}; \mu^2) = \frac{1}{x_{\mathbb{P}}B_D} \left[R_g \frac{\alpha_s(\mu^2)}{\mu} x_{\mathbb{P}}g(x_{\mathbb{P}}, \mu^2) \right]^2$$

• Pomeron PDFs $f_{a/\mathbb{P}}(z, \mu_F^2; \mu^2)$ DGLAP-evolved up to μ_F^2 from input Pomeron-to-parton splitting functions $P_{a\mathbb{P}}(z) \equiv f_{a/\mathbb{P}}(z, \mu^2; \mu^2).$

Evolution equation for diffractive PDFs

• Treat contribution from $\mu^2 < \mu_0^2 \sim 1 \text{ GeV}^2$ as in usual Regge factorisation approach (need to fit to data):

$$\Rightarrow \quad f_{a/p}^{\mathrm{D}}(x_{\mathbb{P}}, z, \mu_{F}^{2}) = f_{\mathbb{P}/p}(x_{\mathbb{P}}) f_{a/\mathbb{P}}(z, \mu_{F}^{2}) \\ \qquad + \int_{\mu_{0}^{2}}^{\mu_{F}^{2}} \frac{\mathrm{d}\mu^{2}}{\mu^{2}} f_{\mathbb{P}/p}(x_{\mathbb{P}}; \mu^{2}) f_{a/\mathbb{P}}(z, \mu_{F}^{2}; \mu^{2})$$

• Differentiate with respect to $\ln \mu_F^2$:

$$\frac{\partial f^{\mathrm{D}}_{\mathsf{a}/p}(x_{\mathbb{P}}, z, \mu^2)}{\partial \ln \mu^2} = \sum_{\mathsf{a}'=q,g} P_{\mathsf{a}\mathsf{a}'} \otimes f^{\mathrm{D}}_{\mathsf{a}'/p} + P_{\mathsf{a}\mathbb{P}}(z) f_{\mathbb{P}/p}(x_{\mathbb{P}}; \mu^2)$$

- Extra **inhomogeneous term** in the evolution equation due to the perturbative Pomeron-to-parton splitting.
- cf. the evolution equation for the **photon** PDFs also has an inhomogeneous term from the photon-to-parton splitting.

Direct Pomeron contribution to DDIS

- Perturbative Pomeron can participate directly in the hard scattering process.
- "Direct Pomeron" contribution is analogous to the "direct photon" component of the photon structure function.

Effect of perturbative Pomeron terms on Q^2 slope

Diffractive PDFs Redux

Generalised PDFs

- Peak due to threshold for $\gamma^*\mathbb{P} \to c\bar{c}$ at $\beta = Q^2/(Q^2 + 4m_c^2)$.
- Additional contributions to scaling violations apart from DGLAP contribution, important for $\beta \gtrsim 0.3$.

- MRW 2006 analysis of diffractive PDFs [hep-ph/0609273]
 - Repeat the H1 2006 analysis with the additional LO perturbative Pomeron terms included (using MRST NLO PDFs in the perturbative Pomeron flux factor).

- Smaller gluon at high *z* compared to H1 2006 Fit A.
- ⇒ Tension between inclusive DDIS and dijet data in Regge factorisation approach partly alleviated by inclusion of perturbative Pomeron terms.
- MRW 2006 diffractive PDFs available from http://durpdg.dur.ac.uk/hepdata/mrw.html

Introduction Diffractive PDFs Generalised PDFs of October Of Diffractive PDFs Redux Unintegrated PDFs Summa of October Octob

ZEUS

- Only the "direct photon" and "resolved Pomeron" component.
- MRW 2006 diffractive PDFs give the best description of data.

Diffractive PDFs in Monte Carlo event generators

Not used in the "standard" MCs (PYTHIA, HERWIG, SHERPA).

- RAPGAP for *ep* collisions (H. Jung).
- POMWIG (B. Cox and J. Forshaw). Philosophy:

• POMPYT (P. Bruni, A. Edin and G. Ingelman): not current.

 Rapgap and POMWIG have the recent H1 2006 diffractive PDFs.

Factorisation breaking in diffractive pp and $p\bar{p}$ collisions

• Consider diffractive dijet production at Tevatron. Diffractive structure function of the antiproton:

$$\begin{split} \tilde{F}_{JJ}^{\mathrm{D}}(\beta) &= \frac{1}{\xi_{\mathrm{max}} - \xi_{\mathrm{min}}} \int_{\xi_{\mathrm{min}}}^{\xi_{\mathrm{max}}} \mathrm{d}\xi \left[\beta g^{\mathrm{D}}(\xi, \beta, Q^2) + \frac{4}{9} \beta \Sigma^{\mathrm{D}}(\xi, \beta, Q^2) \right], \\ \text{measured by CDF [PRL 84 (2000) 5043]}. \end{split}$$

- Factorisation broken in diffractive hadron-hadron collisions by (soft) interaction between spectator partons.
- Suppression factor S² calculable from eikonal models with parameters fitted to soft hadron-hadron data.

Unintegrated, generalised PDFs

Martin, Ryskin, Teubner [hep-ph/9912551]:

• Exclusive J/ψ production at HERA calculated within k_t -factorisation using a generalised, unintegrated gluon density $(T_g = \text{Sudakov form factor})$:

$$f_g(x, x', t, \frac{k_t^2}{k_t^2}, \mu^2) = \exp(B_D t/2) R_g \frac{\partial [T_g(k_t^2, \mu^2) \times g(x, k_t^2)]}{\partial \ln k_t^2}$$

Khoze, Martin, Ryskin [0802.0177]:

• Probe f_g by measuring exclusive Υ production at LHC via photon/odderon exchange.

Introduction Diffractive PDFs Generalised PDFs Diffractive PDFs Redux O000000 O

Relevance for central exclusive production at LHC

Khoze, Martin, Ryskin [0802.0177, and references therein]:

$$\sigma(pp \to p + A + p) \sim \frac{S^2}{B_D^2} \left| \frac{\pi}{8} \int \frac{\mathrm{d}Q_T^2}{Q_T^4} f_g(x_1, x_1', Q_T^2, \mu^2) f_g(x_2, x_2', Q_T^2, \mu^2) \right|^2 \hat{\sigma}(gg \to A)$$

$$f_g(x, x', Q_T^2, \mu^2) = R_g \frac{\partial}{\partial \ln Q_T^2} \left[\sqrt{T_g(Q_T^2, \mu^2)} \, xg(x, Q_T^2) \right]$$

- Sudakov factor, $T_g(Q_T^2, \mu^2)$, suppresses the infrared Q_T region.
- Plot by J. Forshaw [hep-ph/0508274].
- Integrand dominated by $Q_T \sim 1-2$ GeV \Rightarrow pQCD applicable (just).
- Calculations implemented in ExHUME event generator
 - (J. Monk and A. Pilkington).

Exclusive diffractive dijet production at the Tevatron

• Distribution of dijet mass fraction $R_{jj} = M_{jj}/M_X$ measured by CDF [0712.0604].

the exclusive diffractive signal (shown shaded).

Doubly-unintegrated PDFs

G.W., Martin, Ryskin [hep-ph/0306169, hep-ph/0309096]

Type of PDF	PDF integrated over	Incoming momentum
Integrated	k^- , ${f k_t}$	$k=(k^+,0,{f 0})$
Unintegrated	k^-	$k = (k^+, 0, \mathbf{k_t})$
Doubly-unintegrated	Nothing!	$k = (k^+, k^-, \mathbf{k_t})$

• Doubly-unintegrated PDFs in terms of integrated PDFs from last step of LO DGLAP evolution:

$$(k, \mu^2) \equiv f_a(x, z, k_t^2, \mu^2)$$

= $T_a(k_t^2, \mu^2) \frac{\alpha_s(k_t^2)}{2\pi} \sum_{b=q,g} P_{ab}(z) \frac{x}{z} b\left(\frac{x}{z}, k_t^2\right)$

+ angular-ordering constraints

• Take input integrated PDFs $b(x/z, k_t^2)$ from MRST 2001 LO.

Doubly-unintegrated PDFs

G.W., Martin, Ryskin [hep-ph/0306169, hep-ph/0309096]

Type of PDF	PDF integrated over	Incoming momentum
Integrated	k^- , ${f k_t}$	$k=(k^+,0,{f 0})$
Unintegrated	k^-	$k=(k^+,0,{f k_t})$
Doubly-unintegrated	Nothing!	$k = (k^+, k^-, \mathbf{k_t})$

• Doubly-unintegrated PDFs in terms of integrated PDFs from last step of LO DGLAP evolution:

$$f_{a}(k,\mu^{2}) \equiv f_{a}(x,z,k_{t}^{2},\mu^{2})$$
$$= T_{a}(k_{t}^{2},\mu^{2})\frac{\alpha_{s}(k_{t}^{2})}{2\pi} \sum_{b=q,g} P_{ab}(z)\frac{x}{z}b\left(\frac{x}{z},k_{t}^{2}\right)$$

+ angular-ordering constraints

• Take input integrated PDFs $b(x/z, k_t^2)$ from MRST 2001 LO.

See also: Collins, Zu [hep-ph/0411332]; Collins, Rogers, Stasto [0708.2833]; Höche, Krauss, Teubner [0705.4577].

[hep-ph/0309096]

$$\mathrm{d}\hat{\sigma} = \mathrm{d}\Phi \, \left|\mathcal{M}\right|^2/F$$

- Evaluate $|\mathcal{M}|^2 / F$ in collinear approximation: $k_i = (k_i^+, 0, \mathbf{0}).$
- Evaluate dΦ with full kinematics:
 k = (k[±] k⁻ k)
- $k_i = (k_i^+, k_i^-, \mathbf{k_t}).$ • No small-x
- No small-x approximations are made.

 Introduction
 Diffractive PDFs
 Generalised PDFs
 Diffractive PDFs Redux
 Unintegrated PDFs
 Summary

 0
 0000000
 00
 0000000
 0000000
 0000000
 0

$Z P_T$ distribution at Tevatron Run I

 q_{1}^{*}

Graeme Watt

 $\overline{M} W = W Z$

 $q = k_1 + k_2$

 Good description of data over entire P_T range from only LO qq̄ → Z subprocess: explicit matrix-element corrections not needed at large P_T.

C. Balazs, M. Grazzini, J. Huston, A. Kulesza and I. Puljak [hep-ph/0403052]:

- Overlay predictions using doubly-unintegrated PDFs (orange lines).
- K-factor = exp $\left(\pi^2 C_A \alpha_S / 2\pi\right)$
- Only LO gg → H subprocess: explicit matrix-element corrections not needed at large P_T, cf. HERWIG.

• Code: http://www.hep.ucl.ac.uk/~watt/

C. Balazs, M. Grazzini, J. Huston, A. Kulesza and I. Puljak [hep-ph/0403052]:

Graeme Watt

- Overlay predictions using doubly-unintegrated PDFs (orange lines).
- K-factor = exp $\left(\pi^2 C_A \alpha_S / 2\pi\right)$
- Only LO gg → H subprocess: explicit matrix-element corrections not needed at large P_T, cf. HERWIG.
- Code: http://www.hep.ucl.ac.uk/~watt/

Diffractive PDFs

- Inclusive diffraction \Rightarrow resolved and direct Pomeron.
- Exclusive diffraction \Rightarrow only direct Pomeron.
- Diffractive PDFs relevant for resolved Pomeron contribution.
- Inhomogeneous evolution analogous to photon PDFs.
- POMWIG event generator for LHC.

Generalised, unintegrated PDFs

- Relevant for exclusive diffractive processes.
- Can be approximately written in terms of usual PDFs.
- EXHUME event generator for LHC.

Doubly-unintegrated PDFs

- Relevant for p_T distributions of final-state particles.
- Get the kinematics right at LO
 - \Rightarrow less need for higher-order corrections.