Tolerance in global PDF analysis

Graeme Watt

University College London

PDF4LHC workshop, CERN, Geneva 22nd February 2008

Uncertainties in global PDF analysis

Theoretical errors

- *Examples:* input parameterisation form, neglected higher-order and higher-twist QCD corrections, electroweak corrections, choice of cuts, nuclear corrections, heavy flavour treatment.
- Difficult to quantify (\rightarrow talks by A. Guffanti, R. Thorne, S. Forte).

Experimental errors

- In principle there **should** be a well-defined procedure for propagating experimental uncertainties on the fitted data points through to the PDF uncertainties.
 - Hessian method: based on linear error propagation, produce eigenvector PDF sets suitable for use by the end user.

Uncertainties in global PDF analysis

Theoretical errors

- *Examples:* input parameterisation form, neglected higher-order and higher-twist QCD corrections, electroweak corrections, choice of cuts, nuclear corrections, heavy flavour treatment.
- Difficult to quantify (\rightarrow talks by A. Guffanti, R. Thorne, S. Forte).

Experimental errors

- In principle there **should** be a well-defined procedure for propagating experimental uncertainties on the fitted data points through to the PDF uncertainties.
 - **1** *Hessian method:* based on linear error propagation, produce eigenvector PDF sets suitable for use by the end user.
 - 2 Lagrange multiplier method: does not rely on linear error propagation, but requires access to global fit code.
 - **3** Neural networks: work in progress (\rightarrow talk by A. Guffanti).

Uncertainties in global PDF analysis

Theoretical errors

- *Examples:* input parameterisation form, neglected higher-order and higher-twist QCD corrections, electroweak corrections, choice of cuts, nuclear corrections, heavy flavour treatment.
- Difficult to quantify (\rightarrow talks by A. Guffanti, R. Thorne, S. Forte).

Experimental errors

- In principle there **should** be a well-defined procedure for propagating experimental uncertainties on the fitted data points through to the PDF uncertainties.
 - **1** *Hessian method:* based on linear error propagation, produce eigenvector PDF sets suitable for use by the end user.
 - 2 Lagrange multiplier method: does not rely on linear error propagation, but requires access to global fit code.
 - **3** Neural networks: work in progress (\rightarrow talk by A. Guffanti).

 Introduction
 Review of Hessian method
 Study of tolerance in global fit
 Summary and Outlook

 0
 000000
 00000000000
 0

Traditional propagation of experimental uncertainties

• Assume χ^2_{global} is quadratic about the global minimum $\{a^0_i\}$:

$$\Delta \chi^2_{\text{global}} \equiv \chi^2_{\text{global}} - \chi^2_{\text{min}} = \sum_{i,j} H_{ij} (a_i - a_i^0) (a_j - a_j^0),$$

where the Hessian matrix has components

$$H_{ij} = \left. \frac{1}{2} \frac{\partial^2 \chi^2_{\text{global}}}{\partial a_i \partial a_j} \right|_{\text{minimum}}$$

• Uncertainty on quantity $F(\{a_i\})$ from linear error propagation:

$$\Delta F = T \sqrt{\sum_{i,j} \frac{\partial F}{\partial a_i} C_{ij} \frac{\partial F}{\partial a_j}},$$

where $C \equiv H^{-1}$ is the covariance matrix, and $T = \sqrt{\Delta \chi^2_{\text{global}}}$ is the tolerance for the required confidence interval.

 Introduction
 Review of Hessian method
 Study of tolerance in global fit
 Summary and Outlook

 o
 000000
 00000000000
 0

Traditional propagation of experimental uncertainties

• Assume $\chi^2_{
m global}$ is quadratic about the global minimum $\{a^0_i\}$:

$$\Delta \chi^2_{ ext{global}} \equiv \chi^2_{ ext{global}} - \chi^2_{ ext{min}} = \sum_{i,j} H_{ij} (a_i - a_i^0) (a_j - a_j^0),$$

where the Hessian matrix has components

$$H_{ij} = \left. \frac{1}{2} \frac{\partial^2 \chi^2_{\text{global}}}{\partial a_i \partial a_j} \right|_{\text{minimum}}$$

• Uncertainty on quantity $F(\{a_i\})$ from linear error propagation:

$$\Delta F = T \sqrt{\sum_{i,j} \frac{\partial F}{\partial a_i} C_{ij} \frac{\partial F}{\partial a_j}},$$

where $C \equiv H^{-1}$ is the covariance matrix, and $T = \sqrt{\Delta \chi^2_{\text{global}}}$ is the tolerance for the required confidence interval.

 Introduction
 Review of Hessian method
 Study of tolerance in global fit
 Summary and Outlook

 o
 o
 o
 oooooo
 o
 o
 o

Eigenvector PDF sets (pioneered by CTEQ)

• Convenient to diagonalise covariance (or Hessian) matrix:

$$\sum_{j} C_{ij} v_{jk} = \lambda_k v_{ik},$$

where λ_k is the *k*th eigenvalue and v_{ik} is the *i*th component of the *k*th orthonormal eigenvector ($k = 1, ..., N_{\text{parameters}}$).

• Expand parameter displacements from minimum in basis of rescaled eigenvectors $e_{ik} \equiv \sqrt{\lambda_k} v_{ik}$:

$$a_i-a_i^0=\sum_k e_{ik}z_k.$$

• Then can show that

$$\chi^2_{\text{global}} = \chi^2_{\text{min}} + \sum_k z_k^2,$$

i.e. $\sum_{k} z_{k}^{2} \leq T^{2}$ is the interior of a hypersphere of radius T

 Introduction
 Review of Hessian method
 Study of tolerance in global fit
 Summary and Outlook

 0
 0
 00000
 0000000000
 0

Eigenvector PDF sets (pioneered by CTEQ)

• Convenient to diagonalise covariance (or Hessian) matrix:

$$\sum_{j} C_{ij} v_{jk} = \lambda_k v_{ik},$$

where λ_k is the *k*th eigenvalue and v_{ik} is the *i*th component of the *k*th orthonormal eigenvector ($k = 1, ..., N_{\text{parameters}}$).

• Expand parameter displacements from minimum in basis of rescaled eigenvectors $e_{ik} \equiv \sqrt{\lambda_k} v_{ik}$:

$$a_i-a_i^0=\sum_k e_{ik}z_k.$$

Then can show that

$$\chi^2_{\text{global}} = \chi^2_{\text{min}} + \sum_k z_k^2,$$

i.e. $\sum_{k} z_{k}^{2} \leq T^{2}$ is the interior of a hypersphere of radius T.

Introduction

Review of Hessian method

Study of tolerance in global fit

Summary and Outlook

Use of eigenvector PDF sets

• Produce eigenvector PDF sets S_k^{\pm} with parameters given by $a_i(S_k^{\pm}) = a_i^0 \pm t e_{ik},$

with t adjusted to give the desired $T = \sqrt{\Delta \chi^2_{\text{global}}}$.

• Then calculate uncertainties on a quantity F with

$$\Delta F = \frac{1}{2} \sqrt{\sum_{k} \left[F(S_k^+) - F(S_k^-) \right]^2},$$

or to account for asymmetric errors ($S_0 = \text{central PDF set}$):

$$(\Delta F)_{+} = \sqrt{\sum_{k} \left[\max(F(S_{k}^{+}) - F(S_{0}), F(S_{k}^{-}) - F(S_{0}), 0) \right]^{2}}$$

$$(\Delta F)_{-} = \sqrt{\sum_{k} \left[\max(F(S_0) - F(S_k^+), F(S_0) - F(S_k^-), 0) \right]^2}$$

• Correlations between two quantities \rightarrow talk by P. Nadolsky.

Introduction

Review of Hessian method

Study of tolerance in global fit

Summary and Outlook o

Use of eigenvector PDF sets

• Produce eigenvector PDF sets S_k^{\pm} with parameters given by

$$a_i(S_k^{\pm})=a_i^0\pm t\,e_{ik},$$

with t adjusted to give the desired $T = \sqrt{\Delta \chi^2_{\text{global}}}$.

• Then calculate uncertainties on a quantity F with

$$\Delta F = \frac{1}{2} \sqrt{\sum_{k} \left[F(S_k^+) - F(S_k^-) \right]^2},$$

or to account for asymmetric errors (S_0 = central PDF set):

$$(\Delta F)_{+} = \sqrt{\sum_{k} \left[\max(F(S_{k}^{+}) - F(S_{0}), F(S_{k}^{-}) - F(S_{0}), 0) \right]^{2}}$$
$$(\Delta F)_{-} = \sqrt{\sum_{k} \left[\max(F(S_{0}) - F(S_{k}^{+}), F(S_{0}) - F(S_{k}^{-}), 0) \right]^{2}}$$

• Correlations between two quantities \rightarrow talk by P. Nadolsky.

Criteria for choice of tolerance $T = \sqrt{\Delta \chi^2_{ m globa}}$

Parameter-fitting criterion

- $T^2 = 1$ for 68% (1- σ) C.L., $T^2 = 2.71$ for 90% C.L.
- Appropriate if fitting consistent data sets with ideal Gaussian errors to a well-defined theory.
- In practice: minor inconsistencies between fitted data sets, and unknown experimental and theoretical uncertainties, so not appropriate for global PDF analysis.

Hypothesis-testing criterion

- Much weaker than the parameter-fitting criterion: treat eigenvector PDF sets as alternative hypotheses.
- Determine T^2 from the criterion that each data set should be described within its 90% C.L. limit.

Criteria for choice of tolerance $T = \sqrt{\Delta \chi^2_{ m globa}}$

Parameter-fitting criterion

- $T^2 = 1$ for 68% (1- σ) C.L., $T^2 = 2.71$ for 90% C.L.
- Appropriate if fitting consistent data sets with ideal Gaussian errors to a well-defined theory.
- In practice: minor inconsistencies between fitted data sets, and unknown experimental and theoretical uncertainties, so not appropriate for global PDF analysis.

Hypothesis-testing criterion

- Much weaker than the parameter-fitting criterion: treat eigenvector PDF sets as alternative hypotheses.
- Determine T² from the criterion that each data set should be described within its 90% C.L. limit.

• For each eigenvector, plot location of the minimum for each data set and the 90% C.L. limits as the distance from the global minimum in units of $\sqrt{\Delta\chi^2_{\rm global}}$:

- A rough "average" over all eigenvectors gives $T = 10 \dots$
- ... But T = 10 exceeds the 90% C.L. limits of some data sets.

"We estimate $\Delta \chi^2 = 50$ to be a conservative uncertainty (perhaps of the order of a 90% confidence level or a little less than 2σ) due to the observation that **an increase of 50 in the global** χ^2 , which has a value $\chi^2 = 2328$ for 2097 data points, usually signifies that the fit to one or more data sets is becoming unacceptably poor. We find that an increase $\Delta \chi^2$ of 100 normally means that some data sets are very badly described by the theory."

- Fairly qualitative statements.
- \Rightarrow Study more quantitatively in new MSTW analysis.

Introduction Review of Hessian method 000000 Study of tolerance in global fit 000000 Output of tolerance of the Summary and Outlook 0

Data sets fitted in MSTW 2008 NLO (prel.) analysis

Data set	$\chi^2/N_{\rm pts.}$	Data set	$\chi^2/N_{\rm pts.}$
H1 MB 99 e ⁺ p NC	9 / 8	BCDMS $\mu p F_2$	182 / 163
H1 MB 97 e ⁺ p NC	42 / 64	BCDMS $\mu d F_2$	187 / 151
H1 low Q^2 96–97 e^+p NC	45 / 80	NMC $\mu p F_2$	121 / 123
H1 high Q ² 98–99 e ⁻ p NC	122 / 126	NMC $\mu d F_2$	103 / 123
H1 high Q^2 99–00 e^+p NC	132 / 147	NMC $\mu n/\mu p$	130 / 148
ZEUS SVX 95 e ⁺ p NC	35 / 30	E665 $\mu p F_2$	57 / 53
ZEUS 96–97 e ⁺ p NC	86 / 144	E665 $\mu d F_2$	53 / 53
ZEUS 98–99 e ⁻ p NC	54 / 92	SLAC ep F_2	30 / 37
ZEUS 99–00 e ⁺ p NC	62 / 90	SLAC ed F_2	40 / 38
H1 99–00 e ⁺ p CC	29 / 28	NMC/BCDMS/SLAC FL	38 / 31
ZEUS 99–00 e ⁺ p CC	38 / 30	E866/NuSea pp DY	227 / 184
H1/ZEUS ep $F_2^{ m charm}$	108 / 83	E866/NuSea <i>pd/pp</i> DY	15 / 15
H1 99–00 <i>e</i> + <i>p</i> incl. jets	19 / 24	NuTeV $\nu N F_2$	50 / 53
ZEUS 96–97 e ⁺ p incl. jets	29 / 30	CHORUS $\nu N F_2$	26 / 42
ZEUS 98–00 $e^{\pm}p$ incl. jets	16 / 30	NuTeV $\nu N xF_3$	40 / 45
DØ I pp̄ incl. jets	68 / 90	CHORUS $\nu N \times F_3$	31 / 33
CDF II <i>p</i> p̄ incl. jets	73 / 76	CCFR $\nu N \rightarrow \mu \mu X$	65 / 86
CDF II $W \rightarrow l \nu$ asym.	29 / 22	NuTeV $\nu N ightarrow \mu \mu X$	39 / 40
DØ II $W \rightarrow l\nu$ asym.	23 / 10	All data sets	2497 / 2723
DØ II Z rap.	19 / 28		
CDF II Z rap.	35 / 29	Red = Update to last MRST fit.	

Graeme Watt

At input scale
$$Q_0^2 = 1$$
 GeV²:

$$\begin{aligned} xu_v &= A_u \, x^{\eta_1} (1-x)^{\eta_2} (1+\epsilon_u \sqrt{x}+\gamma_u x) \\ xd_v &= A_d \, x^{\eta_3} (1-x)^{\eta_4} (1+\epsilon_d \sqrt{x}+\gamma_d x) \\ xS &= A_S \, x^{\delta_5} (1-x)^{\eta_5} (1+\epsilon_S \sqrt{x}+\gamma_S x) \\ x\bar{d} - x\bar{u} &= A_\Delta \, x^{\eta_\Delta} (1-x)^{\eta_S+2} (1+\gamma_\Delta x+\delta_\Delta x^2) \\ xg &= A_g \, x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g \sqrt{x}+\gamma_g x) + A_{g'} \, x^{\delta_{g'}} (1-x)^{\eta_{g'}} \\ xs + x\bar{s} &= A_+ \, x^{\delta_5} \, (1-x)^{\eta_+} (1+\epsilon_S \sqrt{x}+\gamma_S x) \\ xs - x\bar{s} &= A_- \, x^{\delta_-} (1-x)^{\eta_-} (1-x/x_0) \end{aligned}$$

- A_u , A_d , A_g and x_0 are determined from sum rules.
- 20 parameters allowed to go free for eigenvector PDF sets, cf. 15 for MRST eigenvector PDF sets.

• Deviations from ideal quadratic behaviour (red dashed lines) for higher eigenvector numbers.

Tolerance in global PDF analysis

Fractional change in χ^2 for each data set

MSTW 2008 NLO PDF fit (prel.) Eigenvector number 1

- Plot $(\chi^2 \chi_0^2)/\chi_0^2$ versus the distance along a particular eigenvector.
- Define 90% C.L. region for each data set as

 $(\chi^2 - \chi_0^2)/\chi_0^2 < (\xi_{90} - \xi_{50})/\xi_{50}.$

 $\xi_{\rm 90}$ is the 90th percentile of the χ^2 -distribution with $N_{\rm pts.}$ d.o.f. $\xi_{\rm 50}\simeq N_{\rm pts.}$ is the most probable value.

• Similarly for the 68% C.L.

Review of Hessian method Study of tolerance in global fit 0000000

Summary and Outlook o

Fractional change in χ^2 for each data set

MSTW 2008 NLO PDF fit (prel.) Eigenvector number 1

- Plot $(\chi^2 \chi_0^2)/\chi_0^2$ versus the distance along a particular eigenvector.
- Define 90% C.L. region for each data set as

 $(\chi^2 - \chi_0^2)/\chi_0^2 < (\xi_{90} - \xi_{50})/\xi_{50}.$

 ξ_{90} is the 90th percentile of the χ^2 -distribution with $N_{\rm pts.}$ d.o.f. $\xi_{50} \simeq {\it N}_{\rm pts.}$ is the most probable value.

• Similarly for the 68% C.L.

• Eigenvector direction sensitive to low-x gluon distribution.

ZEUS ep 99-00 σ H1/ZEUS ep F

• Eigenvector direction sensitive to low-x gluon distribution.

• Eigenvector direction sensitive to strange quark asymmetry.

Eigenvector direction sensitive to many parton flavours.

• Eigenvector direction sensitive to high-x gluon distribution.

Review of Hessian method Study of tolerance in global fit Summary and Outlook Introduction

Contribution to PDF uncertainty from single eigenvector

MSTW 2008 NLO PDF fit (prel.)

Fractional contribution to uncertainty from eigenvector number 1

MSTW 2008 NLO PDF fit (prel.)

Fractional contribution to uncertainty from eigenvector number 6

101

10

10

At input scale

 $Q_0^2 = 1 \text{ GeV}^2$

 Introduction
 Review of Hessian method
 Study of tolerance in global fit
 Summary and Outlook

 0
 000000
 0000000●0
 0

Contribution to PDF uncertainty from single eigenvector

MSTW 2008 NLO PDF fit (prel.)

Fractional contribution to uncertainty from eigenvector number 11

0.8 0.6 0.4 0.2 0 xg xu, 0.6 0.2 0.: -0.2 -0.4 -0.6 -0.2 -0.4 -0.4 10 10.3 10 10 10** 10'1 $xS = 2x\overline{u} + 2x\overline{d} + xS + x\overline{S}$ 0.8 0.6 0.4 0.2 0 xd, 0.6 -0.2 -0.2 -0. -0.4 -0.4 10 10 10 10* 10 $\mathbf{x}\Delta = \mathbf{x}\overline{\mathbf{d}} - \mathbf{x}\overline{\mathbf{u}}$ xs + xs 0.8 0.6 0.4 0.2 0.6 0.0 0.: -0.2 -0.4 -0.2 10 10 10 10 xs - x5 0.8 0.6 0.4 0.2 0 At input scale $Q_0^2 = 1 \text{ GeV}^2$ -0.2 -0.4 -0.6 10 10 10

MSTW 2008 NLO PDF fit (prel.)

Fractional contribution to uncertainty from eigenvector number 19

 Introduction
 Review of Hessian method
 Study of tolerance in global fit

 0
 000000
 000000000

 Tolerance vs. eigenvector number

Eigenvector number

Summary and Outlook

 Introduction
 Review of Hessian method
 Study of tolerance in global fit
 Summary and Outlook

 0
 000000
 000000000●
 0

Tolerance vs. eigenvector number

MSTW 2008 NLO PDF fit (prel.)

Graeme Watt

Summary

- CTEQ and MRST have so far used a fixed value of the tolerance $T = \sqrt{\Delta \chi^2_{\rm global}}$ in producing eigenvector PDF sets.
- Propose **dynamic** determination of tolerance: different for each eigenvector of the Hessian/covariance matrix.
- In general 90% C.L. given by $T \sim \sqrt{50}$. Close to MRST value. CTEQ tolerance ($T = \sqrt{100}$) too large?
- Smaller tolerance for some eigenvectors, e.g. strange quarks.

Outlook

- Will provide LO, NLO, NNLO (+ modified LO for MCs) PDFs, each with 40 additional eigenvector PDF sets.
- Will provide stand-alone FORTRAN, C++, MATHEMATICA interpolation code (in addition to inclusion in LHAPDF).
- Timescale: \sim few weeks for publication and public release.

Appendix

MSTW 2008 NLO (prel.) compared to MRST 2001 NLO

