Introduction	Inclusion of Tevatron Run II data	Dynamical tolerance	Summary and Outlook
000000	000000	000	0

Parton distributions for the LHC

Graeme Watt

UCL HEP Group Meeting

15th December 2008

Introduction

IFFF/08/95 DCFT/08/190 Cevendish-HEF-08/16 15th December 2008

Parton distributions for the LHC

A.D. MARTIN⁴, W.J. STIRLING⁶, R.S. THORNE⁴ AND G. WATT⁴

* Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK ^A Cavendin Laboratory, University of Cambridge, CB3 8HE, UK ^c Department of Physics and Astronomy, University College London, WCIE 6HT, UK

Abstract

We present spheric bading-orders, new-to-bading usite and new-to-arcsite-bading order parton distribution interaction (SEV WOM) distribution provides and the standard framework of leading-severation framework and the standard sensibility and the standard sensibility and the standard sensibility and the standard sensibility of the standa

Contents

1	Introduction	4
2	Survey of experimental developments	e
3	Overview of theoretical formalism	\$

- Paper nearing completion.
- ${\sim}150$ pages, ${\sim}70$ figures
- UCL: R.S. Thorne, G.W.
- "MSTW 2008"
- arXiv:0812.xxxx [hep-ph]
- Major update to previous "MRST" analyses.
- "MRST" = "MST" + R.G. Roberts (now retired)

- Hopefully, the LHC will someday collide hadrons.
- Hadrons (e.g. protons) are not elementary particles: made of **partons** (i.e. quarks and gluons).
- Incoming particles in Feynman diagrams are partons.
- Parton Distribution Functions (PDFs) essential to relate theory to experiment (i.e. "phenomenology").

 $f_{a/A}(x, Q^2)$ gives number density of partons of flavour a in hadron of type A with momentum fraction x at a hard scale $Q^2 \gg \Lambda_{\rm QCD}^2$.

$$\sigma_{AB} = \sum_{a,b=q,g} \hat{\sigma}_{ab} \otimes f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2)$$

 Introduction
 Inclusion of Tevatron Run II data
 Dynamical tolerance
 Summary and Outlook

 000000
 00000
 000
 00
 00
 0

Diagrammatic interpretation of collinear factorisation

 $\sim \sim \sim$

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: ∫^{Q²}_{k⁰}(dk²_T/k²_T) α_S P_{q←q}(z)
- Similar collinear logs from other parton splittings.

• $f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$

$$\frac{\partial f_{a/p}}{\partial \ln Q^2} = \alpha_S \sum_{a'=q,g} P_{a \leftarrow a'} \otimes f_{a'/p}$$

 \sim

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: ∫^{Q²}_{k⁰₀}(dk²_T/k²_T) α_S P_{q←q}(z)
- Similar collinear logs from other parton splittings.
- Evolution equation:

$$\frac{\partial f_{\mathsf{a}/\mathsf{p}}}{\partial \ln Q^2} = \alpha_S \sum_{\mathsf{a}'=q,g} P_{\mathsf{a}\leftarrow\mathsf{a}'} \otimes f_{\mathsf{a}'/\mathsf{p}}$$

•
$$f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$$

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: $\int_{k_0^2}^{Q^2} (dk_T^2/k_T^2) \alpha_S P_{q \leftarrow q}(z)$
- Similar collinear logs from other parton splittings.

• $f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$

$$\frac{\partial f_{a/p}}{\partial \ln Q^2} = \alpha_S \sum_{a'=q,g} P_{a \leftarrow a'} \otimes f_{a'/p}$$

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: $\int_{k_0^2}^{Q^2} (dk_T^2/k_T^2) \alpha_S P_{q \leftarrow q}(z)$
- Similar collinear logs from other parton splittings.

• $f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$

$$\frac{\partial f_{\mathbf{a}/\mathbf{p}}}{\partial \ln Q^2} = \alpha_S \sum_{\mathbf{a}'=q,g} P_{\mathbf{a}\leftarrow\mathbf{a}'} \otimes f_{\mathbf{a}'/\mathbf{p}}$$

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: $\int_{k_0^2}^{Q^2} (dk_T^2/k_T^2) \alpha_S P_{q \leftarrow q}(z)$
- Similar collinear logs from other parton splittings.
 - Evolution equation:

$$\frac{\partial f_{\mathbf{a}/\mathbf{p}}}{\partial \ln Q^2} = \alpha_S \sum_{\mathbf{a}'=q,g} P_{\mathbf{a}\leftarrow\mathbf{a}'} \otimes f_{\mathbf{a}'/\mathbf{p}}$$

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: $\int_{k_0^2}^{Q^2} (dk_T^2/k_T^2) \alpha_S P_{q \leftarrow q}(z)$
- Similar collinear logs from other parton splittings.

• $f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$

$$\frac{\partial f_{a/p}}{\partial \ln Q^2} = \alpha_S \sum_{a'=q,g} P_{a \leftarrow a'} \otimes f_{a'/p}$$

 Introduction
 Inclusion of Tevatron Run II data
 Dynamical tolerance
 Summary and Outlook

 000000
 000000
 000
 00
 0
 0

Diagrammatic interpretation of collinear factorisation

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: $\int_{k_0^2}^{Q^2} (dk_T^2/k_T^2) \alpha_S P_{q \leftarrow q}(z)$
- Similar collinear logs from other parton splittings.

• $f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$

$$\frac{\partial f_{a/p}}{\partial \ln Q^2} = \alpha_S \sum_{a'=q,g} P_{a \leftarrow a'} \otimes f_{a'/p}$$

Diagrammatic interpretation of collinear factorisation

- Drell-Yan production at LO: $q\bar{q} \rightarrow V = W/Z/\gamma^*$
- Cut diagram: $|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^*$
- Large logarithm from collinear gluon emission: $\int_{k_0^2}^{Q^2} (dk_T^2/k_T^2) \alpha_S P_{q \leftarrow q}(z)$
- Similar collinear logs from other parton splittings.
- Evolution equation:

$$\frac{\partial f_{a/p}}{\partial \ln Q^2} = \alpha_S \sum_{a'=q,g} P_{a \leftarrow a'} \otimes f_{a'/p}$$

•
$$f_{a/p}(x, Q_0^2) \Rightarrow f_{a/p}(x, Q^2)$$

• Structure functions in DIS:

$$F_i(x, Q^2) = \sum_{a=q,g} C_{i,a} \otimes f_{a/A}(x, Q^2).$$

- PDFs are universal.
- Fit existing DIS data from HERA and fixed-target experiments, together with data from the Tevatron.
- Expand P_{a←a'}, C_{i,a} and ô_{ab} as perturbative series in α_S.
- Work at LO/NLO/NNLO for increasing accuracy.

 Introduction
 Inclusion of Tevatron Run II data
 Dynamical tolerance
 Summary and Outlook

 Paradigm for PDF determination by "global analysis"

1 Parameterise the x dependence for each flavour a = q, g at the input scale $Q_0^2 \sim 1 \text{ GeV}^2$ in some flexible form, e.g.

$$xf_{a/p}(x,Q_0^2) = A_a x^{\Delta_a} (1-x)^{\eta_a} (1+\epsilon_a \sqrt{x}+\gamma_a x),$$

subject to number- and momentum-sum rule constraints.

- **2** Evolve the PDFs to higher scales $Q^2 > Q_0^2$.
- **3 Convolute** the evolved PDFs with $C_{i,a}$ and $\hat{\sigma}_{ab}$ to calculate theory predictions corresponding to a wide variety of data.
- **4** Vary the input parameters $\{A_a, \Delta_a, \eta_a, \epsilon_a, \gamma_a, \ldots\}$ to minimise

$$\chi^{2} = \sum_{i=1}^{N_{\text{pts.}}} \left(\frac{\text{Data}_{i} - \text{Theory}_{i}}{\text{Error}_{i}} \right)^{2}.$$

Example of PDFs obtained from global analysis

MSTW 2008 NLO PDFs (68% C.L.)

p.19/19

https://www.hep.ucl.ac.uk/twiki/pub/HEPGroup/XmasMeeting2006/watt.pdf

CDF Run II inclusive jet data, $\chi^2 = 56$ for 76 pts.

[hep-ex/0701051]

 $D \oslash$ Run II inclusive jet data (cone, R = 0.7) MSTW 2008 NLO PDF fit ($\mu_R = \mu_F = p_T^{JET}$), $\chi^2 = 114$ for 110 pts.

[arXiv:0802.2400]

Impact of Run II jet data on high-x gluon distribution

• Run II jet data prefer smaller gluon distribution at high x.

• Errors not significantly reduced with inclusion of Run II data.

Graeme Watt

$W \rightarrow I \nu$ charge asymmetry from Tevatron Run II

 $A(\eta_l) = \frac{\mathrm{d}\sigma(l^+)/\mathrm{d}\eta_l - \mathrm{d}\sigma(l^-)/\mathrm{d}\eta_l}{\mathrm{d}\sigma(l^+)/\mathrm{d}\eta_l + \mathrm{d}\sigma(l^-)/\mathrm{d}\eta_l}$

- Mainly constrains down quark.
- Antiquarks important at low E¹_T.

CDF data on lepton charge asymmetry from W ${\rightarrow} e_{^{\vee}}$ decays

Inclusion of Tevatron Run II data Summary and Outlook Introduction Dynamical tolerance 000000

$W \rightarrow I \nu$ charge asymmetry from Tevatron Run II

- Problems fitting recent DØ data \Rightarrow not included in final 2008 fit.
- Inconsistencies between DØ and CDF: under investigation.

[CDF Preliminary, August 2007]

Parameter-fitting criterion

- $T^2 = 1$ for 68% (1- σ) C.L., $T^2 = 2.71$ for 90% C.L.
- In practice: minor inconsistencies between fitted data sets, and unknown experimental and theoretical uncertainties, so not appropriate for global PDF analysis.

Hypothesis-testing criterion

- Much weaker: a "good" fit has $\chi^2\simeq {\it N}_{
 m pts.}\pm\sqrt{2{\it N}_{
 m pts.}}$
- Treat PDF sets obtained from eigenvectors of covariance matrix as alternative hypotheses.
- MRST: $T^2 = 50$ for 90% C.L. limit [CTEQ: $T^2 = 100$].
- **MSTW:** determine T^2 from the criterion that each data set should be described within its 90% (or 68%) C.L. limit.

Parameter-fitting criterion

- $T^2 = 1$ for 68% (1- σ) C.L., $T^2 = 2.71$ for 90% C.L.
- In practice: minor inconsistencies between fitted data sets, and unknown experimental and theoretical uncertainties, so not appropriate for global PDF analysis.

Hypothesis-testing criterion

- Much weaker: a "good" fit has $\chi^2 \simeq \textit{N}_{\rm pts.} \pm \sqrt{2\textit{N}_{\rm pts.}}$
- Treat PDF sets obtained from eigenvectors of covariance matrix as alternative hypotheses.
- MRST: $T^2 = 50$ for 90% C.L. limit [CTEQ: $T^2 = 100$].
- **MSTW:** determine T^2 from the criterion that each data set should be described within its 90% (or 68%) C.L. limit.

• Details: G.W., talk at PDF4LHC, CERN, February 2008.

- Fit to reduced dataset comprising 589 DIS data points, cf. 2699 data points in global fit.
- Errors given by T² = 1 don't overlap ⇒ inconsistent data sets included in global fit.
- Dynamic tolerance $T^2 > 1$ (partially) accommodates inconsistent data sets.

Introduction	Inclusion of Tevatron Run II data	Dynamical tolerance	Summary and Outlook
			•

Summary

- Definitive LO, NLO, NNLO PDF sets for first LHC running.
- First PDF fits available to include Tevatron Run II data.
- Improved dynamic tolerance controlling PDF uncertainties.
- "MSTW 2008" PDFs supersede older "MRST" sets.

Outlook

- Publication and public release of code and grids imminent.
- Standalone Fortran, C++ and Mathematica code will be available from http://projects.hepforge.org/mstwpdf/ (with later implementation into LHAPDF library).