
TTC Interface Module for ATLAS Read-Out Electronics: Final production version based
on Xilinx FPGA devices

Jonathan Butterworth, John Lane, Martin Postranecky, Matthew Warren

Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
warren@hep.ucl.ac.uk

Abstract
The functionality and the details of the upgraded

firmware and hardware of the Xilinx FPGA-based
production version of the ATLAS-SCT TTC Interface
Module (TIM) are described. The TIM interfaces ATLAS
SCT, Pixel, MDT and CSC Read-Out Drivers to the
ATLAS Level-1 Trigger using the LHC-standard TTC
(Timing, Trigger and Control) and Busy systems. Twelve
prototype TIM modules, based on ten AMD/Lattice CPLD
devices, have been produced and used since 2001. Final
production modules, based on two Xilinx FPGAs, are in
manufacture. The details of the transition in hardware and
firmware from CPLD to FPGA are described.

I. INTRODUCTION
The TTC Interface Module (TIM) interfaces the

ATLAS Level-1 Trigger system signals to the SCT and
Pixel inner sub-detectors, as well as the MDT and CSC
muon sub-detector Read-Out Drivers (RODs). Clock and
trigger signals are received from the Timing, Trigger and
Control (TTC [1]) system and a busy signal is returned to
the Central Trigger Processor (CTP). These interfaces can
be seen in Figure 1.

TTC Interface Module (TIM)

Backplane Drivers Backplane Receiver

ROD Crate
Controller

Configuration,
Control,

Status

Read Out Drivers (RODs)

Clock Fast Commands &
Serialised IDs Busy

Read Out Drivers (RODs)

Standalone Clock + Control

ID FIFOs

TTCrx

Level 1 Trigger
TTC/Busy System

Optical
Signals In

VME Slave Interface

MRMW/JBL v1.3 16-09-04

Sequencer

Busy OR, Mask & Monitor

Busy

External Inputs Busy Output

NIM/ECL
Front-panel I/O

L1A,
BCR,

ECR etc.

Figure 1: TIM interfaces and main functional blocks.

A single TIM distributes the clock and trigger signals to
a maximum of 16 RODs with their associated Back-Of-
Crate cards (BOCs). Communication is via a custom J3
backplane in a 9U VME64x crate.

Each ROD returns an individual busy signal to the TIM,
where a crate-busy signal is generated. Figure 2 shows
these connections graphically.

BOCBOCBOCBOCBOCBOCBOCBOCBOCBOCBOCBOCBOCBOCBOC

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

RODFP /PO
Resets

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
(Rea
d-Out
Drive

r)

ROD
Signals Busses

ROD
(Rea
d-Out
Drive

r)

Front-End
Modules
Clock &
Control
(optical)

(48/BOC)

ROD Busys

MRMW v1.1 16 -09-04

Clocks Fanout

TTC
(optical)

ROD
Crate
Busy

VM E

NIM /
ECL

Signals

ROD

Read-Out
Driver

RCC

ROD
Crate

Controller

BOC

Back Of
Crate

TIM

TTC
Interface
Module

TIM -OK

Figure 2. TIM connections in a ROD-crate.

In stand-alone mode the TIM is capable of generating
all the TTC-type signals internally under software control.
External inputs are also available, these signals being
formatted to fit TIM-ROD interface specifications.

Twelve prototype TIMs have been produced in the past
3 years. These are being used at various SCT assembly
sites, at the SCT and Pixel test-beams and the ROD-DAQ
development sites.

It has been our aim from the start of the design work to
make all versions TIM compatible as far as the end users
are concerned. As details of the TIM requirements and
operation are detailed in two past papers [2,3], this paper
describes only changes to the hardware design and
firmware functionality used in the production TIM.

ROD Backplane
Mapping & PECL
Drivers

J3 Backplane ROD
Signals OutputVME Buffers

FPGA1
XC2S200E

(VME Interface)

NIM/ECL
Signals I/O

FPGA2 XC2S600E
(TIM Functions)

TTC Fibre-
optic Input

TTCrm
Module

Stand-alone Clocks
& Delay Lines

MRMW v1.1 16-06-04

Figure 3. Photograph of a production TIM (version 3A) showing main functional components/regions.

II. HARDWARE

A. Programmable Logic
The TIM prototypes were produced using 10

AMD/Lattice MACH5 CPLDs on each board. As this
device family, its firmware language (DSL) and its
associated compiler/fitter (MachXL) are now obsolete and
unsupported, a more flexible configuration was sought.

We selected the Xilinx Spartan IIE FPGA series, as our
ROD collaborators already had experience with Xilinx, and
new Spartan IIE devices were being released at the time
(ensuring maximal protection against obsolescence) that
matched our requirement. These devices contain enough
RAM resources to allow the prototype TIM’s discrete
RAMs and FIFO devices to be incorporated into the FPGA.

The production TIM design uses two FPGAs per board
- lowering costs - with much increased logic resources and
flexibility for expansion. Figure 4 shows differences in
programmable-logic PCB area utilised (including the
RAMs and FIFOs) between the prototype and production
version.

Figure 4: Filled blocks show programmable-logic, RAM and
FIFO on CPLD (left) and FPGA (right) based TIMs.

B. Clock Selection
The TIM will always attempt to provide a clock to all of

the RODs in its crate. It should be able to switch between
different sources without a glitch, and in the case of a clock
failure, do so automatically. To achieve this dedicated
clock-multiplexer devices have been utilised.

These devices [4] switch automatically to a back-up
clock if the selected clock is absent. Using clock detection
circuits, errors can be flagged and transmitted to all the
RODs in the crate via a dedicated backplane line (TIM-
OK), allowing RODs to tag events accordingly. This
system is shown in Figure 5.

MRMW/MP v2.0 18-06-04

INTCLK

TIMCLK

ENEXTCLK
ENTTCCLK

RUNMODE

TIM-OK

1

0

12.RunEn, 0

0.En, 8

TTCCLK

EXTCLK

SACLK

1.Cmd, 12

1

2

Fail-
over
Clock
MUX

ENSACLK ENINTCLK

FPGA2

Clock
Detect

Clock
Detect

Clock
Detect

6. Stat, 96. Stat, 8

TTCCLK-IN

EXTCLK-IN

0

1

TTCREADY-IN

TTCCLK-OK

EXTCLK-OK

1

2

Fail-
over
Clock
MUX

QPLL_LOCKED

Figure 5: Production TIM clock selection.

C. TTCrq
Additional control and clock connections have been

added to allow configuration of the QPLL on the TTCrq [5]
version of the TTCrx mezzanine.

D. 32 Bit data
32 VME data lines are connected to both FPGAs on the

production TIM, allowing VME D32 access.

E. Busy OR
An open-collector busy output option (jumper

configurable) has been added to allow a wired-OR of busy
from multiple TIMs to be sent to a single busy input.

F. Remote Firmware Update
Circuitry is in place to allow VME access to the JTAG

chain – enabling remote updates of TIM functional
firmware. This can be seen in Figure 6.

III. FIRMWARE
The firmware for the production TIM is a re-write of

the original DSL in VHDL. As VHDL is supported by most
hardware and software vendors, with a large developer
base, we are optimistic that the code will be maintainable
over the lifetime of the board.

A. Overall Structure
The production TIM design uses two FPGA’s

specifically to perform two different roles.

FPGA1 is the board manager – supporting the more
generic board functions: VME Interface, local bus control,
board reset and provides status information on FPGA2.

 FPGA2 hosts all the TIM specific functions and
provides interfaces to front-panel and ROD backplane
signals.

With this partitioning it is envisaged that firmware for
FPGA1 will stabilise earlier than FPGA2 allowing remote
updates. Figure 6 shows the functional connections.

FPGA1

VME
Interface

&
Board

Manager

Address Bus

Config
EEPROM
FPGA2

Back-Plane
Signals

Front-Panel
Signals

TTCrx

VME
Control

Data Bus

Base Addr.
Preset Switches

31
15

32

32

fpga2_reset

spare_bus

Debug Mode
Select Switch

16

Clocks &
Clk Control

vme_read
vme_select

Trigger
Window

Board ID8 8

Front-Panel
LEDs

Internal Trig,
FER, ECR

vme_write

4 4

clk

JT
A

G

FP and PO
Resets

ROD Busy16

Config
EEPROM
FPGA1

Addr(31:1)

Data(31:0)

Debug
Header

16

ROD Busy
LEDs

16

Debug
LEDs

Debug
Header

16

Debug
LEDs

fpga2_ok

88

jtagx_en

FPGA2

TIM
Function

VME
I/O

MRMW v1.1 01-06-04

Figure 6: TIM Functional layout

Internally, the FPGA code is structured in blocks that
mimic the prototype TIM’s individual CPLDs. In this way
it is possible to fit the production firmware into the
prototype CPLDs (although too time consuming to be
generally useful).

B. Simulation
Simulation has been done at the board level as much as

possible. For this we use a test-bench incorporating both
FPGAs and some auxiliary devices such as bus transceivers
and programmable oscillators. Simulation can be controlled
via the bus interface - approximating the system in normal
use with a crate controller. Routines written for our
software test suite have been added to our VHDL test
module and the results compared.

Simulating in this way is not without problems. In
particular the largest delays in the system can be attributed
to the input and output blocks on the FPGA’s. To ensure
we understood these we have used post place and route
simulation models generated by the Xilinx tools, with some
success.

C. Resource Utilisation
Our goal is to have a large amount of spare resource for

future needs. Table 1 shows most areas are below the 50%
utilisation level. In the two areas that exceed 50%, IO
buffers are physically constrained by the board and RAM
can still spill into the ‘slice’ resources if need.

Table 1: FPGA Resource Utilisation (from Xilinx ISE “Place and
Route Report”)

 FPGA1 FPGA2
Slices 11% 26%

IO Buffers (Pads/Pins) 56% 75%

Clock IO Buffers (Clock inputs) 25% 50%

Global Clocks 25% 25%

Block-RAMs 56% 88%

D. Development Tools
We use Mentor Graphics FPGA Advantage [6], coupled

with Xilinx ISE for our development. In particular,
Leonardo is used for synthesis and ModelSim for
simulation.

As the code is arranged hierarchically in blocks of
source, the graphical interface provided by FPGA
Advantage alleviates the tedium involved with connecting
these up.

E. New Functionality
The prototype TIM is capable of all of the original TIM

requirements, and as such is in wide use at present. At this
stage the production TIM is a drop-in replacement for the
prototype. By moving components like the FIFOs into the
FPGA we are now also able to accommodate requests for
additional functions – e.g. the new orbit counter and event-
counter-reset ID.

Aside from some additional debug registers, the only
new functionality specific to the production TIM at present
relates to resonating wire-bonds from fixed-frequency
triggers. This is detailed in the next section.

IV. RESONATING WIRE-BONDS
Triggers can initiate increased activity in some parts of

front-end electronics. This can lead to large variations in
the current flowing through some wire-bonds between
read-out and idle times. On CDF trigger rates close to the
mechanical resonant frequency of a wire-bond in a strong
magnetic field have been seen to cause the bond-wires to
oscillate to destruction [7].

Physics triggers are random, and have very little chance
of damaging a wire-bond [8], but calibration and test runs
can easily generate triggers at fixed frequencies.

To understand this problem in the context of the SCT,
studies were undertaken with test wire-bonds. Figure 7 and

Figure 8 show the effect as seen in these studies [8].

Figure 7: Photograph of a wire-bond off resonance.

Figure 8: Photograph of a wire-bond on resonance (17kHz).

Although it was found that the SCT wire-bonds were
not at risk - they are oriented parallel to the magnetic field
on the barrel and are short enough on the end-caps to not
resonate within the trigger frequency range – some
protection may still benefit the life-time of the detector.

1) Fixed frequency trigger veto

A single TIM distributes triggers to +/-500 front-end
modules within a sub-detector partition. It can also generate
triggers, some from its own trigger oscillator. This, coupled
with it being responsible for sending a busy to the CTP that
can stop triggers, makes it a good place to locate some sub-
detector specific trigger management logic.

The Fixed Frequency Trigger Veto (FFTV) module is
tasked with identifying this type of trigger, and stopping
them. Although Fast Fourier Transforms seem ideally
suited to the task, the large amount of logic resources
required and the complexity of the system led us to try
something simpler.

Using an algorithm from CDF [8] as a basis, we
compare successive trigger periods and increment a counter
if they match (within a programmable tolerance). By
setting maximum and minimum values for trigger period,
outside of which no action is taken, we can tune the system
for a specific band of triggers (see Figure 9).

During LHC machine testing, it is likely that runs with
one bunch in the machine will take place. These will
generate triggers at a fixed frequency (~11.2kHz), but
below the band of danger to wire-bonds. By tuning the
FFTV to ignore these, the SCT will not compromise these
important runs.

Figure 9: Simulation output (ModelSim) showing: A) Triggers generating a veto – note the short-period triggers being ignored, B) long-period
triggers ignored, C) varied-period triggers generating a veto.

To ensure the FFTV does not interfere with ATLAS
data taking its operation needs to be compatible with the
Level-1 Trigger system. In run mode vetoing triggers
independently will cause mis-aligned trigger-numbers and
render all events after that point unusable. TIM will
therefore assert the busy when fixed frequency triggers are
encountered. The time spent in this state will be counted,
allowing the contribution to dead-time to be monitored.

In stand-alone mode the TIM generates the trigger
numbers internally, so the veto can stop triggers before this
is done.

V. TESTING
Two pre-production TIMs have been produced. One of

these has been in use at the Cambridge SCT ROD test setup
since June 2004. Extensive stand-alone testing has been
undertaken using the TIM’s internal sequencer and sink
RAM, as well as using TIM-Test-Cards [9] providing
loading and feedback of backplane signals.

VI. REFERENCES

[1] TTC Home Page:
http://ttc.web.cern.ch/TTC/intro.html
[2] TIM and CLOAC – LEB1999 Paper:
http://www.hep.ucl.ac.uk/~mp/TIM+CLOAC_paper1.pdf
[3] TIM – LEB2001 Paper:
http://www.hep.ucl.ac.uk/atlas/sct/tim/TIM-1_LEB-
2001_paper.pdf
[4] ICS581-01 Integrated Circuit:
http://www.icst.com/products/summary/ics581-0102.htm
[5] TTCrq webpage:
http://ttc.web.cern.ch/TTC/TTCmain.html#TTCrq

[6] FPGA Advantage webpage:
http://www.mentor.com/fpga-advantage/
[7] G. Bolla et al., Wire-bond failures induced by
Resonant vibrations in the CDF silicon tracker, Nucl. Instr.
Meth. A518 (2004) 277.
[8] T. J. Barber et al., Resonant Bond Wire Vibrations in
the ATLAS SemiConductor Tracker, Accepted for Nucl.
Instr. Meth. CERN-04-053
[9] Tim Test Card:
http://www.hep.ucl.ac.uk/atlas/sct/tim/#timtest

Trigger

Period Max

Period Min

Period

Match
Threshold

Match Count

Busy

A B C

