

VHEeP: A very high energy electron– proton collider based on protondriven plasma wakefield acceleration

Allen Caldwell (MPI) <u>Matthew Wing (UCL/DESY/Univ. Hamburg)</u>

- Introduction
- Accelerator based on plasma wakefield acceleration
- Physics in very high energy *eP* collisions
- Summary and outlook

Introduction

- Much has been learnt in fixed-target DIS and HERA experiments on proton structure, diffraction, jet physics, etc..
- A high energy eP collider complements the pp programme from the LHC and a potential future e^+e^- linear collider.
- The LHeC is a proposed *eP* collider with significantly higher energy and luminosity than HERA with a programme on Higgs, searches, QCD, etc..
- We want to ask, what about a very high energy *eP* collider ?
 - Plasma wakefield acceleration is a promising technology to get to higher energies over shorter distances.
 - Considering (e.g.) 7 TeV protons and 3 TeV electrons giving $\sqrt{s} \sim 9$ TeV.
 - Driver will be the physics case: what physics can be done for such a collider ?
 - There is no doubt that this is a new kinematic range.
 - Will be able to standard tests and QCD.
 - Will be at very low x; can we learn about saturation ?
- Will discuss sketch of such a collider and first ideas on physics possibilities.

[±]UCL

Plasma wakefield acceleration

Accelerators using RF cavities limited to ~100 *MV/m*; high energies \Rightarrow long accelerators. Gradients in plasma wakefield acceleration of ~100 *GV/m* measured.

Short proton beam

Proton-driven plasma wakefield acceleration*

- Electrons 'sucked in' by proton bunch
- Continue across axis creating depletion region
- Transverse electric fields focus witness bunch
- Theory and simulation tell us that with CERN proton beams, can get *GV/m* gradients.
- Experiment, AWAKE, at CERN to demonstrate proton-driven plasma wakefield acceleration for this first time.
 - Learn about characteristics of plasma wakefields.
 - Understand process of accelerating electrons in wakes.
 - This will inform future possibilities which we, however, can/should think of now.
- * A. Caldwell et al., Nature Physics 5 (2009) 363.

Plasma wakefield accelerator

Long proton beam

- Long beam modulated into microbunches which constructively reinforce to give large wakefields.
- Self-modulation instability allows current beams to be used.
- With high accelerating gradients, can have
 - Shorter colliders for same energy
 - Higher energy
- Using the LHC beam can accelerate electrons up to 6 *TeV* over a reasonable distance.
- We choose $E_e = 3$ TeV as a baseline for a new collider with $E_P = 7$ TeV $\Rightarrow \sqrt{s} = 9$ TeV.
 - Centre of mass energy ×30 higher than HERA.

A. Caldwell & K. Lotov, Phys. Plasmas **18** (2011) 103101

Plasma wakefield accelerator

• Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.

• Overall layout works in powerpoint.

• Need high gradient magnets to bend protons into the LHC ring.

- One proton beam used for electron acceleration to then collider with other proton beam.
- High energies achievable and can vary electron beam energy.
- What about luminosity ?
- Assume
 - ~3000 bunches every 30 mins, gives $f \sim 2 Hz$.
 - $N_p \sim 4 \times 10^{11}$, $N_e \sim 1 \times 10^{11}$
 - $\sigma \sim 4 \ \mu m$

Physics case for very high energy, but moderate luminosities. 5

For few × 10^7 s, have $1 pb^{-1}$ / year of running.

Physics at VHEeP

- Cross sections at very low *x* and observation/evidence for saturation. Completely different kind of proton structure.
- Contact interactions, e.g. radius of quark and electron.
- Measure total γP cross section at high energies and also at many different energies; their relation to cosmic-ray physics. No stat. issues and precise determination of energy dependence.
- Proton and photon structure, in particular e.g. F_L given change in beam energy, and eA scattering.
- Tests of QCD, measurements of strong coupling, etc..
- Other ideas ?

[±]UCL

Kinematics of the final state

- Generated ARIADNE events with $Q^2 > 1 \text{ GeV}^2$ and $x > 10^{-7}$
- Test sample of $L \sim 0.01 \ pb^{-1}$

• Nice kinematic peak at 3 TeV, with electrons scattered at low angles.

• Hadronic activity in central region as well as forward and backward.

• Hadronic activity at low backward angles for low x.

θ

• Clear implications for the kind of detector needed.

Sketch of detector

Higher-x events

- Will need conventional central colliding-beam detector.
- Will also need long arm of spectrometer detectors which will need to measure scattered electrons and hadronic final state at low x.

DIS variables

- Access down to $x \sim 10^{-8}$ for $Q^2 \sim 1 \ GeV^2$.
- Even lower x for lower Q^2 .
- Plenty of data at low x and low $Q^2 (L \sim 0.01 \text{ pb}^{-1})$.
- Can go to $Q^2 \sim 10^5 \text{ GeV}^2$ for $L \sim 1 \text{ pb}^{-1}$.
- Powerful experiment for low-x physics where luminosity less crucial.

$\sigma_{\gamma P}$ at large coherence lengths

Look at behaviour of $\sigma_{\gamma P}$ in the proton rest frame in terms of Q² and coherence length, *I*.

Electron is a source of photons which is a source of partons.

Coherence length is distance over which quark-antiquark pair can survive.

If cross sections become same as a function of Q2, the photon states have had enough time to evolve into a universal size.

Look at what HERA data has shown and what the potential of VHEeP is.

$\sigma_{\gamma P}$ math

Calculate *F*₂ from e.g. double-differential cross section:

$$F_2 = \frac{\langle Q^2 \rangle^2 \langle x \rangle}{2 \pi \alpha^2 Y_+} \frac{d^2 \sigma}{dx dQ^2}$$

Then calculate $\sigma_{\gamma P}$ from F_2 :

$$\sigma_{\gamma p} = \frac{4 \pi^2 \alpha \left(\langle Q^2 \rangle + (2 \langle x \rangle M_P)^2 \right)}{\langle Q^2 \rangle^2 \left(1 - \langle x \rangle \right)} F_2$$

Plot $\sigma_{\gamma P}$ versus the coherence length, *I*:

$$l = \frac{\hbar c}{2\langle x\rangle M_P}$$

σ_{YP} versus *I* results example

- Consider HERA inclusive data and transform to $\sigma_{\gamma P}$ versus coherence length, *l*.
- Example data for $Q^2 = 3.5 \ GeV^2$.
- $\sigma_{\gamma P}$ fit as $(\sigma_0 \cdot P)$ for individual Q^2 values.
- Very good fit of data using this simple parametrisation.
- True for all Q² values considered.

$\sigma_{\gamma P}$ versus *I* results

• Results from HERA shown for $0.25 < Q^2 < 200 \text{ GeV}^2$.

- Results for *I* up to 3×10^4 fm corresponds to $x \sim 3.5 \times 10^{-6}$.
- $\sigma_{\gamma P}$ fit as $(\sigma_0 \cdot I^{\lambda})$ for individual Q^2 values.
- Fits converging at large *I*.
 - Fits cross at some point.
 - $\sigma_{\gamma P}$ becomes independent of Q^2 at large *I*.

$\sigma_{\gamma P}$ at high *I* or low *x*

Photon-Proton Cross Section

• Fits cross at 3 × 10⁸ fm or x ~ 3.5 × 10⁻¹⁰.

• Need low $Q^2 < 1 \ GeV^2$ measurements for such low x.

• But will have large numbers of events for $Q^2 \sim 1-10 \text{ GeV}^2$ and $l > 10^6 \text{ fm}$.

• Can constrain higher Q² and improve fit extrapolations.

• More simulations needed and more realistic idea of regions that can be measured.

14

Summary and outlook

- Presented an idea for a very high energy *eP* collider at $\sqrt{s} \sim 9$ *TeV* based on plasma wakefield acceleration.
- Have reasonable-looking accelerator parameters using the CERN infrastructure.
- Have started to develop a physics programme for high energies, but relatively modest luminosities.
- Many technical challenges in the accelerator and detector.
- VHEeP presents a completely new kinematic region in *eP* collisions.
- Developing a rich physics programme where we could learn about high-energy cross sections, saturation, etc.
- More work and understanding needed.
- Look out for further developments and ideas. Ideas are also welcome !