The AWAKE Electron Spectrometer

F. Keeble, M. Cascella, J. Chappell, L. Deacon, S. Jolly, M. Wing; UCL, London I. Gorgisyan, S. Mazzoni; CERN, Geneva P. La Penna, M. Quattri; ESO, Munich

f.k@cern.ch

AWAKE

The AWAKE experiment at CERN aims to use a proton driven plasma wakefield to accelerate electrons from 10-20 MeV up to GeV energies in a 10 m long rubidium plasma cell.

Spectrometer design

Accelerated electrons are separated from the SPS protons by a 0.1–1.5 T dipole magnet and are incident on a 1 m wide **DRZ-High** (Gd₂O₂S:Tb) scintillating **screen**. The scintillator light is transported to an intensified CCD camera (Andor iStar 340T) in an adjacent tunnel.

Optics

To collect as much light as possible while maintaining **spatial** resolution, a large diameter, 400 mm focal length lens (Nikon AF-S NIKKOR 400 mm f/2.8E FL ED VR) is attached to the camera. Scintillator light is brought to the lens via three highly reflective mirrors: two in the same tunnel as the

Calibration tests

Charge response tests of the scintillator indicate that beam charges of $O(10^{-2} \text{ pC})$ will be clearly visible even in the presence of **significant** proton **background** radiation.

The **temporal evolution** of the amount of **light emitted** by the scintillator has been studied. This emission decays away exponentially with a measured half-life of $324 \pm 5 \mu s$.

In order to determine the **resolution** of the **optical system** a modulation transfer function (MTF) analysis has been carried out using a masked lamp with four line pair spacings. The results indicate that the system is **not yet optimally aligned**.

scintillator and a third in the adjacent tunnel. All three mirrors are optical-grade, with $\lambda/2$ flatness over any 100 mm, thus ensuring that the system resolution remains high.

	Width	Height
Mirror 1	898.2 mm	121.5 mm
Mirror 2	819.5 mm	126.4 mm
Mirror 3	504.6 mm	140.5 mm

🔶 Data

2.50

 $t \ / \ \mathrm{ms}$