Data-Driven Physics Aware
Learning for Disruption
Prediction in Nuclear
Fusion

Katya Richards

4].\,;' §
A

UK Atomic
Energy
Authority ‘UCL CDT DIS







Tokamak

central solenoid

poloidal magnetic field
outer poloidal field coils

helical magnetic field toroidal field coil

plasma electrical current toroidal magnetic field

Image: EUROfusion



-_— 1 m o

—
[N = 3
=

I

-'//:
ﬂu.&&:é‘?b

/!

v

" iViSoAuaN
' m -

ITER

g
<



Disruptions

* |t’s not all sunshine

* Symptoms include:
e Sudden loss of confinement
* Melting of walls
* Lifting of entire tokamak off ground
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“On a small tokamak,
it doesn’t matter so
much if you let the
plasma go bang...”

Big Disruptions

* |t gets worse
* 15000 tons worse



* Remind audience that disruptions are not
meltdowns



Disruption prediction

e All is not lost!
* 30ms warning needed
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Cross-tokamak
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Cross-tokamak with glimpse
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Neural networks




FRNN

* Fusion Recurrent Neural Network
* Inputs: various tokamak diagnostics, every 1ms
e Outputs: time to disruption/chance will disrupt

nature

Letter | Published: 17 April 2019

Predicting disruptive instabilities in
controlled fusion plasmas through deep
learning

Julian Kates-Harbeck &, Alexey Svyatkovskiy & William Tang
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More Data
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More Physics

e Physics Guided Neural Networks (PGNNs)

* Include physics laws in loss function

Physics-guided Neural Networks (PGNN):
An Application in Lake Temperature Modeling

Anuj Karpatne* William Watkins! Jordan Read! Vipin Kumar*
karpa009@umn.edu wwatkins@usgs.gov jread@usgs.gov kumar001@umn.edu
Abstract High

This paper introduces a novel framework for combin-
ing scientific knowledge of physics-based models with
neural networks to advance scientific discovery. This
framework, termed as physics-guided neural network
(PGNN), leverages the output of physics-based model
simulations along with observational features to gen-
erate predictions using a neural network architecture.
Further, this paper presents a novel framework for us-
ing physics-based loss functions in the learning objective
of neural networks, to ensure that the model predic-
tions not only show lower errors on the training set but Low
are also scientifically consistent with the known physics

Physics-guided
Neural Networks
(PGNN)

‘ Physics-based Models

Use of Scientific Theory

Black-box Neural Networks

Use of Data High
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What I've actually been doing

* Fourier transforms
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FUSION

A source of safe, reliable
clean energy for the future




