CMS Level 1 Trigger Software Release Validation

The Trigger

At the full design luminosity of the LHC, beam crossings occur in the CMS detector at a rate of 40 million per second (40MHz). Approximately 25 interactions occur with each beam crossing giving 10⁹ events occurring in the CMS detector every second.

This input rate of 10^9 interactions per second must be reduced by a factor of at least 10^7 to 100 Hz, the maximum rate that can be archived by the on-line computer farm.

To extract interesting physics from all interactions for storage and further analysis, we require a fast and precise electronic system called **The Trigger**.

The trigger is divided into two levels:

- Level 1 (L1) Trigger
- High Level Trigger (HLT)

Kachanon Nirunpong

To analyse CMS data, we use a specific software framework for CMS called CMSSW framework.

To prepare the L1 Trigger to be ready for real data taking when CMS is operational, the events are generated by Monte Carlo process and the trigger is emulated onto the framework.

I work on the Level 1 Trigger Software Release Validation. The purpose of the release validation is to provide information on the verification of the validity and performance status of the trigger software. The L1 Trigger will look for electrons, muon, jets, and missing transverse energy.

To see how good L1 Trigger is, we plots distributions of some quantities such as

- efficiency
- resolution
- correlation between L1 trigger data and the MC data
- of
- Transverse Energy (E_T)
- η (pseudo rapidity)
- φ (azimuthal angle)

for

- isolated e/γ , and non-isolated e/γ
- central jet, forward jet, and tau jet
- muon
- MET

Work Flow

L1 Validation Plots: isolated electrons

Kachanon Nirunpong

L1 Validation Plots: central jets

Kachanon Nirunpong

Some Improvement in The New release of CMSSW

CMSSW_3_1_0_pre6

CMSSW_3_1_0_pre10

GCT Validation

Global Calorimeter Trigger (GCT) Validation

GCT validation

Plot correlation of η , ϕ , and E_T between input and output of the GCT

e/γ and E_T Sum

An RCT Region

e/γ

For EM, we just compare isolated and non-isolated EM outputs of the RCT to those of the GCT.

 η , ϕ , and ET of the EM candidates are identified by η , ϕ , and E_T of the RCT regions

E_T Sum

The E_T -sum input to the GCT is summation of E_T of all RCT regions.

Jet

Jets

The jets are characterized by the transverse energy E_T in 3x3 calorimeter regions. The summation spans 12x12 trigger towers. The jets are labelled by (η, φ) indexes of the central calorimeter region.

GCT Validation: η , ϕ , and E_T plots for e/γ

GCT Validation: η , ϕ , and E_T plots for jets

GCT Validation: E_T sum plot

Conclusion

We have a tool to validate L1 Trigger software.We have a tool to validate the GCT software.

Thank you for your attention!