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Outline of Talk

* vy Disappearance measurement at T2K:
e Current world limits.
* Method and main source of background.

* Neutrino interaction systematics:
 GENIE Monte Carlo generator.
e Event reweighting.
e Effect on oscillation measurement.

e Constraining cross section systematics using near detector
fits:

e CCln measurement at ND280, MC study of event
rates.
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Current Knowledge of Atmospheric Mixing Parameters

Survival probability given by:

.o [1.9 V?)L(km)
P(v, — v,) ~1— cos* 91 sin® [ GeV) -

Compilation of world measurements:

Phys.Rev.Lett.101:131802,2008.
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Atmospheric Accelerator
>0.92(90% CL) (2.43+/-0.13) x 103 (68% CL)

Expected sensitivity at T2K after 5
years (nominal running):

§(sin® 26,3) ~ 0.01

§(Am3s) < 10~ %eV?



The v, Disappearance Measurement

Signal = anything that allows the species and energy of neutrino to be reconstructed.
Compare expected with observed at Super-K to extract oscillation parameters.
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Off axis beam: /
- Narrow energy spectrum
- Peak of spectrum --> oscillation

Charged current quasi-elastic maximum @ SK.
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candidate for signal: P o m e e e mmeem e TR :
- Reconstruct energy using ;
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- 50% of CC events.
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Predicting what Passes the 1Ru-like cut at Super-K

dNPred E ¥ 5
Y / dE,: % (E,)io(E,) ieih (B, - p(Ey; E)°)

dE;//“eco :
/ ---------------------- '

Prediction of flux at Super-K:
- Flux Monte Carlo
- NA61 data.

- Measurements at near detectors.

N
o(E,) - efﬁ (E,) = ZJ@ €
Neutrino cross-sections: i=1

- Use neutrino MC generators (GENIE, NEUT).

- Generators act as interface to world neutrino

cross-section data.

- Have to link together many theoretical and

phenomenological models to cover necessary

kinematical range.
Beam MC In practice use a chain of MC to evaluate the above.
Description of Neutrino MC| _j| petector MC > Reconstruction/
detector. generator Analysis cuts

. Computationally and logistically demanding! Size of data sets
|mpelrla| College representing lifetime of5experiment are prohibitive.
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CCln+ Background

Main source of background is non-CC-QEL for which only the muon is detected.
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Simulating Neutrino Interactions

At ~1GeV cross-sections are poorly known:

e Lack of data. . ) e .

_ ' with sensitivity @ T2K this is
* Inadequate theoretical models. == =====- » now relevant Dominant interaction modes at ~ 1GeV:
e Uncertainties of order 20%.

quasi-elastic scattering
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deep-inelastic scattering
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GENIE Monte Carlo Generator

/\% Generates Events for Neutrino Interaction Experiments:

\\\ = * Developed by an international collaboration of neutrino interaction
‘#“‘”ng experts and used on many experiments.
- * Modern Object-Oriented Neutrino MC Generator:
> ® Modular design.
* Flexible to new experimental data and developments in theory.
www.genie-mc.org ¢ Combines many models to span a large kinematical range; Several
MeV to several hundred GeV:
e Maintains internal consistency and continuity.

5

Fast simulation needed to
Many, >100, configurable When ?dd?.d o ihe defre]ct?rtl\/llC and the_) evaluate changes in input
input physics parameters! reconstruction stages the lota parameters.
production time is significant.
. Full description of GENIE in: Nucl.Instrum.Meth.A614:87-104,2010
Imperial College
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http://www.genie-mc.org
http://www.genie-mc.org

Event Reweighting

Motivation: To evaluate the effect of changes in input physics
parameters without re-running time intensive MC.

Validation: Compare reweighted

(circle) with regenerated (triangle).

dN/dX Gabs at +10% |
e&% /

® ° N X
-
N-dimensional physics param space >
X (= an observable) o §
Can reweight parameters controlling: 003 ¢ Qf%@ .
- Cross-section models. 0.030 L b o

i et P ility for 1

- Intranuclear hadron transport model. 0025 F el robability for i

, absorption of
. . el 0.020 f hadrons in nucledr
Massive speed increase opens up lots of possibilities: ]

Scan | 1 £ d eval 0.015 |- environment
- dcan large volumes of input parameter space and evaluate . & . ]
S putp P 0.010 f %, Increased by 10%.

systematic uncertainties.
- Use input parameters as free parameters in fits to data. 0.005 ¢
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Oscillation Systematics Study

 Oscillation fit nominal mock data

* Mock data tweaked (reweighted) to account for a physics

model change.

* Performed oscillation fit again.
* Fit uses nominal MC as prediction.

* Studied how the best fit point shifts.
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Constraining CCln Background at ND280 (1)

Uncertainties in neutrino interaction models give rise to systematic uncertainties in oscillation
measurement. Make cross-section measurement at ND280 to constrain systematics.

ND280:

UA1 Magnet Yoke Fine Grain Detectors (FGDs):
- Fiducial volumes.
- Vertex location.

Time Projection Chambers (TPCs):

Downstream - Momentum measurement..
I ECAL _PID.
Solenoid Coil - Vertex location.

Tracker ECal:
- PID.
Barrel ECAL - Energy measurement.

Imperial College
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Constraining CClxrt Background at ND280 (2)
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30 % both pion and muon
have paths through a
TPC.

~ 24,000 events for 1yr
@ full intensity

12

CCln signature:
= Muon

=Tc+

= Proton



Summary

e At T2K’s sensitivity neutrino interaction systematics are
important.

e CCln+ 1s the dominant background for the disappearance
measurement.

e Using measurement at ND280:

* High enough statistics to make very accurate
measurements of CCln+ channel.

» Use this to reduce interaction systematics.

Imperial College
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BACKUPS
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Very Brief Overview of Neutrino Oscillations

Mass and flavour eigenstates different:

- Mass eigenstates propagate at different speeds: ‘ V; (;1_;' : t)> :| Vi>€Zpi Z—1k;.t

- Quantum mechanical interference of flavour eigenstates — Neutrino oscillations.

IVL’ Vl
Related by the PMNS matrix: |V« | = Unins| V2 Sij = sin0;;
Ve Vs cij = cos 0;;

“Atmospheric/Beam” “Beam/Reactor - whoever is first”  “Solar/Reactor”
-0
2

1 0 0 +¢; 0 +s,e\(+¢, +s, 0 0.8 0.5 s,e
Uuns =10 +cyy  +554 0 I 0 -5, +¢, 0]=|04 06 0.7

0 -5, +0yJl=5," 0  +c, 0 0 1) (04 06 0.7
Open questions for current generation of experiments:
e [s 023 maximal? Look at vy =3 vy. TOK
e [s 013 non-zero? Look at sub-dominant vy =3 ve. K
e [s there CP violation?  Future beam experiments depending on size of 013.
* Precise measurement of mass squared differences. oy

Imperial College 15
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Super-K Cuts

 Fiducial Volume Cut: Require reconstructed vertex is contained inside the fiducial.
Removes difficult to reconstruct events close to wall.

* Fully Contained Cut: Put limit on hits in outer detector to make sure event did started inside
detector.

 Visible Energy Cut: visible energy in the inner detector (ID) is greater than 100 MeV/c .
Removes noise and low energy events.

* Single ring cut: So dominantly select QEL events.

* Ring has to be muon-like.

Imperial College
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Shape Only Fits
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Process - Topology Breakdown

Total| 5165 2803 : 1936 0.72 0.24
Multi s 0.25 5.41 0.00 5.66
1et+1n0 0.06 0.44 2.56 0.00 3.06
1 +1n* 0.23 0.91 0.00 1.14
1 +1n° 0.02 0.19 0.00 0.22
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MC Study of Event Rates
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Initial thoughts: -
- Significant statistics for events W|th both
M and 1T tracks going through TPC.
- Can recover events for which one track
does not go through a TPC using the
tracker ECal.
- Also a subset of events will have
information on the proton track - detailed
studies of kinematical dependencies of
models.
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ND280 is a complex detector:
initially look at different types
of detector topologies for
CC11 measurement.

A Brj

th

@

n detector p

kOther

®FGD->TPC->X->TPC->Brl
FGD->TPC->X->TPC

" "® FGD->TPC->Brl

FGD->TPC

FGD->Brl

FGD only
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SuperK CCQE Error Envelope: Tweaking QEL axial mass
parameter by +/- 15%

errEnvHists_MaQEL_ccqge
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All error envelope studies are for 5 years nominal
running assuming ~ 1200 signal events/year.
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SuperK Non-CCQE Bkg Error Envelope:
Tweaking RES axial mass parameter by +/- 20%

errEnvHists_MaRES_non-ccge
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Error Envelope for events which pass FC1R cut: now include

uncertainty on signal and background (add in quadrature)

signal_and_background
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Including Nuisance Parameters in Fit
'simplistic case: uncorrelated systematics]

. Penalty terms
Systematic (nuisance) Expected l

\ Observed p PN N
nbins / nsyst
0= <a;>)

(Ammmsm 9mmao,01,--- 22 Oz '|'202 Oz/ez + Z

2
Usyst,j
Updates
Tweaks @
'Monte nominal MC

2 .9
e; = e;(Amy, ., Sin“20mn, ag, a1, ..., ;)

nsyst

H w;) * e;(A mn,sm229mn,< ap >,< a1 >,...,<a

Calculate gradients for
optimised fitting

techniques.
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