

Electron Neutrino Analysis At Near Detector ND280

Georgios Christodoulou IOP Meeting UCL 30/03/2010

Outline

Physics motivation

- Neutrino oscillations
- T2K overview

Electron neutrino analysis at ND280

 Preliminary study to separate the signal from the background

Neutrino Oscillations: Muon Neutrino Disappearance

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 (1.27\Delta m_{23}^2 \frac{L}{E_{\nu}})$$

The Near Detector – ND280

- Measure neutrino interactions and estimate the background contaminations for Super-K
 - UA1 magnet provides 0.2T B field
 - Front optimized to measure π0 interactions
 - Rear optimized to measure charge current interactions
 - Surrounded by the calorimeter and muon detector

LIVERSITY OF

Georgios Christodoulou

- **T2K golden interactions**
- Easy to reconstruct the neutrino energy

Electron Neutrino Analysis at ND280

- Very important to characterize the electron neutrino beam contamination at near detector
 - Main background for the oscillation analysis at far detector
 - Very challenging analysis
 - Need very good particle separation
 - Need to understand the background from other sources (π0, neutrino-electron scattering, single photon production etc) and estimate their uncertainties
 - Extrapolate the reconstructed electron neutrino spectrum to far detector

Neutrino Topology

Monte Carlo sample

- 0.15×10²⁰ POT
- GENIE v2.4.4 for neutrino interactions only on the FGDs
- Neutral Current contamination: 6670

	ALL	%
Vμ	15869	94.49
vµ-Bar	606	3.60
Ve	291	1.73
ve-Bar	28	0.17
Ve	ALL	%

Ve	ALL	%
CCQE	83	28.52
CCRES	111	38.14
CCDIS	93	31.96
СОН	4	1.37

Electron Neutrino Reconstruction Analysis at near detector

- Use a cut chain to get a selection of reconstructed electron neutrinos in the tracker
 - Include also background coming from outside the tracker
 - For example photons created somewhere else in the detector and converged in the FGDs
- Try to correct and fit the selected spectrum in order to separate the signal from the background
 - The neutrino energy is reconstructed using always the Charge Current Quasi Elastic (CCQE) formula and then apply an energy correction in order to predict the energy spectrum for non-CCQE

ve Selection At ND280

	Signal	Background
Negative TPC Track	218	64603
Reconstructed vertex in fiducial FGD volume	147	14734
TPC PID	100	2724
P > 200 MeV	80	553
No other E-Like Tracks	62	184

Predict the NuE spectrum

- Fit the neutrino spectrum with the non-parametric KEYS pdf
- Apply an event weight in order to predict the signal and the background pdf
- Fit the expected number of signal and background events
- For the signal events apply another weight in order to correct the neutrino energy for the non-CCQE interactions

Extract the ve signal

Fit the expected number of events

- Fit both signal and background events
 - Signal : 57.31 +/- 15.27
 - Background : 180.69 +/- 18.98
- Errors are quite large
 - Weighted events
 - Low statistics
 - KEYS pdf construction bandwidth effect

Use the $1/r^2$ approximation to estimate the expected number at far detector: 0.3586 +/- 0.096

Correct the neutrino energy

Two methods can be used

- Energy response matrix
- Apply an additional bin-by-bin weight by comparing the signal true and reconstructed distributions
- Build another pdf and generate the expected corrected events from this pdf
 - Compare with the true neutrino distribution

As a first approximation the method works well at energies below ~3.5 GeV

Need a more proper look at higher energies

 $\exists \mathbf{B} \mathbf{D}$

Backup Slides

Energy Response matrix

