

Progress report for the energy spectrometer test experiment at ESA at SLAC

Bino Maiheu on behalf of the T474/T491 collaboration

LCWS 2007, DESY Hamburg

- Physics motivation
- Building an energy spectrometer based upon high resolution cavity BPMs
- The ESA test facility at SLAC, T474/T491, experimental setup
- Putting in the chicane, beam line modifications, progress since VLCWS '06
- Progress on results and data analysis, understanding systematics
- Outlook

Physics motivation, project aim

- Precision physics, constrain SM parameters, eg. top threshold properties
- Constrain/exclude SUSY scenarios
- Impact of beam energy on measurements, luminosity spectrum dL/dE

Proposed ILC energy spectrometer

:lr

- Precision measurement : dE/E 10⁻⁴
- Minimal impact on beam itself : allowed emittance growth from SR
- Limited space budget in BDS ~ 60 m
- Minimal impact on physics data taking for e.g. calibration runs

- Magnetic chicane with high resolution beam position monitors : cavity BPMs
- Max 5 mm dispersion at center chicane : determines resolution
- Emittance growth determines chicane layout
- Diagnostics needed:
 - Gain drifts : temperature
 - Mechanical stability : interferometer
 - Magnetic fields (JB.dl): NMR, Hall, fluxgate magnetometers

T474 test experiment at ESA, SLAC

116 ESA comparable repetition rate, bunch charge, energy spread as ILC

- Possibility to vary bunch length, energy, charge Easy steering with feedback system
- Build an energy spectrometer prototype, using a 4 magnet chicane
- Goal is to demonstrate the stability of this type of energy measurement at 10⁻⁴ level, and investigate how such a magnetic chicane can be operated most efficiently at the ILC
 - Operate at ~5 mm η_{y} at center chicane as in current ILC design
 - Need < 1 µm resolution on position measurement (BPM)</p>
 - With position measurement stability over multiple hours of ~ 100 nm

T474/T491 collaboration, running

Institutes involved

SLAC, UC Berkeley/LBNL, Notre Dame, Dubna, DESY/Zeuthen, RHUL, UCL, Cambridge PI's

M. Hildreth (Notre Dame), Y. Kolomensky (Berkeley) and S. Boogert (RHUL)

FY06 running :

January run : test run (4 days), commissioning of steering BPMs April run :

- commissioning of RF cavity BPMs outside of chicane (old & new)
- optimization of digitization and processing

July run :

- commissioning of interferometer system on ILC linac prototype BPMs
- commissioning of energy BPM at high dispersion
- stability data taking with 10 BPMs, frequent calibrations

FY07 running :

March run :

- commissioning of second energy BPM
- installation and commissioning of magnetic chicane : first chicane data !
- relocation of BPM/interferometer to center of chicane,

cal tone system and new processors with remotely controllable attenuation
Planned July run

Different BPM systems used

ir ii

- ILC linac prototype cavities
- 36 mm aperture, 2.859 GHz
- low Q (~ 500)
- good monopole suppression
- x/y polarizations in same cavity
- Middle BPM on x/y mover system
- Referenced to downstream Q

ILC cold linac prototypes

LCWS 2007 - DESY Hamburg, Saturday 02/06/2007 - MDI session

- Rectangular cavities, Q, x and y
- Polarizations separated
- 2.856 GHz, high Q ~ 3000
- 20 mm aperture (0.8 ")

:lr New spectrometer BPM prototype İİL **Optimized design :** A. Lyapin/UCL : high resolution : ~ 100 – 200 nm Mover system aperture • monopole suppression own reference cavity developed by UCL/RHUL/MSSL mechanically rigid mover system installation planned in July Use SLC MDL 2856 **Digitize at 22 MHz** Dipole cavity, 2878 MHz **Processor electronics Reference cavity**

Magnetic measurements

Simulation of magnets carried out by N. Morozov (Dubna) prepare for measurements in SLAC testlab (SLAC/Dubna/Zeuthen)

Main simulation results :

- magnetic field integral 10⁻⁴ uniformity region is ±15 mm
- region for possible NMR probe use determined (X*Z= ±7*±40 cm)
- relative contribution of the fringe field to the total field integral is 22%
- maximal level of the magnetic field in return yoke is no more 0.4 T
- temperature factor for the magnetic field integral is 6.1×10⁻⁵×1/C°
- Screens to reduce fringe fields

IIL,

N. Morozov/Dubna

Magnetic measurements

Results of magnetic measurements in SLAC lab, Nov. '06 (SLAC/Dubna/Zeuthen)

- Magnetic field integral RMS stability : 60 ppm (near working point 150 A)
- Bdl relative RMS stability : ~ 100 ppm (both at 150 A and 200 A)
- measured temperature factor for the magnetic field integral is 5.7 10⁻⁵ 1/C° in a good agreement with estimated one from magnetic field simulations 6.1 10⁻⁵ 1/C°
- JB.dl value (~ 0.117 T.m when I ~ 150 A) is in agreement with simulations : 0.118 T.m

• Analytical dependence of $\int B.dl$ vs. Current obtained in the vicinity of the working point $\int B.dl = 0.7813 \ 10^{-3} \ x$ Current

Residual magnetic field along full chicane length (vertical component)

Interferometer

- Sub-nm resolution, installation itself is stable over 1 hour within 30 nm with fixed mirrors
- Relocated for march '07 run (previously on ILC cold linac prototype triplet)

İİĿ

- Now monitor center of chicane + one head left for new UK BPM
- I BPM in front of chicane, send laser beam down long pipe

Stability results, FY06 running

Paper "Commissioning of Spectrometer BPMs in End Station A" in the make In depth analysis of 48 hour stability data taking with frequent calibrations

- Variation in ω and γ over 48 hours found negligible (~ 2 nm) justifies use fixed ω and γ in algorithm which extracts amplitude and phase
- Calibration with beam (corrector scans) induce quite large variations in IQ phase and scales : no feedback, beam jitter mover calibrations + think of clever calibration scheme (helmholtz coils)
 - Commissioned during march '07 run
 - Fast pulse per pulse beam motion
 - Less sensitive to beam jitter/drifts
 - Average scales and IQ phases

• Automation : write status into ADC

Stability results, FY06 running

Clear correlation, phase seems fairly stable, need to analyze what effect this has on stability of energy measurements, data needed !

Preliminary spectrometer results

- Taking into account *S*.dl and deflection at center of chicane, can compute correct beam energy
- Have to subtract incoming orbit in each event : prove we measure just energy !
- Further detailed analysis, spectrometer stability studies underway...

More and better data to come in July...

Outlook

- Planned July run
 - Installation of new BPM prototype at center of chicane on mover system
 - Further data taking, full commissioning of calibration system
 - will be first good run with complete chicane up and running
 - also commissioning of synch stripe measurements (T475) : additional energy measurement systematics !
- Future plans to install metrology grid (M. Hildreth et al.)
 - Understanding mechanical stability

- Publications in pipeline
- More systematic understanding of complete system needed !

Backup Slides

Stability/resolution over 48 hours

116

Linked resolution

Helmholtz calibration results

Helmholtz calibration results

