

A Calorimeter for Proton Therapy

Laurent Kelleter Transfer Talk 29/09/2017

Proton Therapy

- Cancer is the world's predominant cause of death (WHO)
- Well established treatment method: Radiotherapy
- Conventional radiotherapy: exponential energy deposition curve
- Proton therapy: Bragg peak: Spare healthy tissue

Compare Radiotherapy

X-rays

Protons

Proton beam therapy

Intensity modulated radiotherapy

proton therapy

doi:10.1038/nrneurol.2016.70

Nature Reviews | Neurology

Laurent Kelleter

29/09/2017

Quality Assurance in Proton Therapy

- Sharp distal edge of Bragg curve makes treatment susceptible to range uncertainties
- Quality Assurance (QA) crucial for assurance of a safe treatment
- QA measurements performed daily/weekly/monthly
- Morning QA: Verify a few proton energies at known depth
- Detector requirements:
 - Energy resolution <1%sigma (2.4% FWHM) at all energies (50 250 MeV)
 - Proton rates of ~10^9 per second
 - Fast data acquisition and read-out
 - Cheap
- Can HEP provide the technology?

SuperNEMO Calorimeter

- SuperNEMO aims to measure a hypothetical neutrinoless double-beta decay
- SuperNEMO calorimeter developed at UCL
- PMT + plastic scintillator
- Energy resolution of 7% FWHM for 1 MeV electrons
- Fast timing
- Nearly water equivalent scintillator

Laurent Kelleter

29/09/2017

Beam Test #1: Setup

Courtesy Simon Jolly & Anastasia Basharina-Freshville

Laurent Kelleter

29/09/2017

Beam Test #1: Results

- Energy resolution: 1.57 ± 0.26 % FWHM for 60 MeV protons
- Only for proton rates up to 1 kHz

ADC Distribution: 800V, 2 mm collimator, 100ns gate

MedAustron Beam Test: Setup

Courtesy Simon Jolly

Laurent Kelleter

29/09/2017

MedAustron Beam Test: Results

- Measurements at clinical energy range (62 252 MeV)
- Energy resolution is still good, but only for proton rates <1 MHz
- We see a strong rate dependence of the ADC counts for proton rates (anode current)
- At proton rates ~1 MHz, pile-up makes single-proton measurement impossible

New Concept: Range Telescope

- Cut scintillator in segments (sheets)
- Read out each sheet individually
- Integrate signal from many protons in each sheet
- Reconstruct Bragg curve from photon output
- Measure Range instead of energy: "Range telescope"

Quenching

- Challenge in plastic scintillators: Quenching
- Photon production not linear to energy deposition for high energy deposition density
- It can be described by Birk's law:

600

400

200

00

20

60

40

80

100

120

29/09/2017

140

160

180

depth (mm)

0.5

200

Reconstruction of a Bragg Curve

- Developed an analytical description of a "quenched Bragg curve"
- Combination of a Bragg curve and Birk's law
- 6 material-dependent parameters
- 3 beam-dependent parameters: Range, range straggling and intensity

Reconstruction of a Bragg Curve

- Quenched Bragg curve fitted to photon depth curve
- Material-dependent parameters are fixed
- Reconstructed Bragg-curve formula is plotted using fitted beam parameters
- Compare reconstructed Bragg curve to simulated Bragg curve

Results:

- Very good reconstruction of proton range/energy (<0.5% deviation)
- Overestimates range straggling because of coarse resolution (sheet thickness)

29/09/2017

Building a Range Telescope

- The scintillator sheets will be produced in collaboration with Nuvia Ltd.
- We will aim for ~2 mm sheet thickness for a good spatial resolution
- Challenge: Read-out because of high number of channels: 40 cm / 2mm = 200 channels
- Solution: Use a "Monolithic Active Pixel Sensor" (MAPS)
- CMOS sensor like in digital cameras
- Take "picture" of scintillation photon depth curve

29/09/2017

14/17

MAPS

Birmingham Beam Test

- 28 MeV proton beam, 7.8 mm range in water
- Measurement with two scintillator sheets: 3 mm and 4 mm
- Two PRaVDA Priapus MAPS (10 cm x 5 cm)

Image taken by MAPS (100 MHz, 1s integration time)

Laurent Kelleter

29/09/2017

Conclusion and Outlook

• Single-Module-Detector:

- Beam tests with the single-module-detector show the potential and limitations of the setup
- We are in contact with Hamamatsu to deal with the rate dependence

Range Telescope:

- An analytical model for the photon depth curve has been developed
- Beam test with a MAPS are VERY PROMISING
- Develop a read-out concept for the range telescope with MAPS

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675265, OMA – Optimization of Medical Accelerators.

Backup

Proton Therapy - Example

A) Conventional

А

radiotherapy (X-rays) radiotherapy (X-rays) В

B) Intensity modulated

http://jgo.amegroups.com/article/view/3448

C) Proton therapy

29/09/2017

Laurent Kelleter

Proton Therapy Centres

Particle therapy centres in Europe - 2015

29/09/2017

Beam Test #2

of Mylar

Results:

•Energy resolution: 0.89 ± 0.11 % σ

ADC Distribution: -900 V, 1.98 mm collimator, 150 ns gate

- •Good linearity!
- •Reaching rates of up to 250 kHz!
- •We suspect a potential problem with the PMT base – next try to use one with no active components.

Laurent Kelleter

29/09/2017

21/17

17

MedAustron Proton Therapy Centre

http://eps-hep2015.eu

