

A Calorimeter for Proton Therapy

Laurent Kelleter University College London MTR Meeting Munich November 2017

Introduction

- Background:
 - M. Sc. Particle Physics (RWTH Aachen)
 - Master project at intersection of HEP an Proton Beam Therapy (PBT)
- Work within OMA:
 - Training:
 - Schools on Medical Accelerators, High-Energy Physics (HEP) and Soft Skills
 - Conferences on Acc. Physics, PBT and MC simulations
 - Participated in two beam tests in PBT Centres
 - Side project: Dose build-up in PBT
 - In collaboration with Medical Physics & Bioengineering
 - Purely simulation
 - Main focus: A calorimeter for PBT

Quality Assurance (QA) in PBT

- Daily QA: Verify beam range at isocentre
- Commercial solutions (e.g. IBA Zebra) are expensive
- Manual scanning is slow (~1hr)
- Detector requirements:
 - Precise: Energy resolution < 1% σ
 - Fast: one billion protons s⁻¹
- Technology transfer from HEP?

SuperNEMO Calorimeter

- SuperNEMO aims to measure a hypothetical neutrinoless double-beta decay
- Calorimeter developed at UCL
- Plastic scintillator & photomultiplier tube
 - Energy resolution of 7% FWHM (for 1 MeV electrons)
 - Pulse length ~100 ns (maximum rate 10 million protons s⁻¹)
 - Water equivalent scintillator

Range Telescope

- Cut scintillator in segments (sheets)
- Read out each sheet individually
- Integrate signal from many protons
- Reconstruct Bragg curve from photon output
- Measure range instead of energy

Proton Range Reconstruction

- Quenching: scintillation light production not linear to energy deposition
- Developed model of a "quenched Bragg curve"
- Three parameters: range, range straggling and intensity

Building a Range Telescope

- Large number of channels requires expensive read-out system
- Solution: "Monolithic Active Pixel Sensor" (MAPS)
- Take "picture" of scintillation photon depth curve

13/11/2017

Birmingham Beam Test

- 28 MeV proton beam: 7.8 mm range in water
- Measurement with two scintillator sheets (3 and 4 mm thick)
- Two PRaVDA Priapus MAPS (10x5 cm²)

Image taken by MAPS (10⁸ protons s⁻¹, 1 s integration time)

Dose Build-up in PBT

- Goal: Quantize dose build-up (BU) in PBT using Geant4
- Distinguish between electron and proton build-up
- Express BU as dose difference normalized to entrance dose

Figure 1: 200 MeV proton beam in a block of water

Figure 2: Dose build-up vs. beam energy

Conclusion

- Summary
 - Beam tests with single-module detector show limitations
 - Range telescope optimized in Geant4
 - Developed model for range reconstruction
 - Found solution for cheap readout of large number of channels (MAPS)
 - First beam test shows promising results
- Outlook
 - Improve software of read-out with MAPS
 - Build larger prototype
 - Make radiation hardness tests with scintillator
- Impact
 - Extensive training at intersection of HEP and PBT
 - Prospect of building a commercial device for PBT

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675265, OMA – Optimization of Medical Accelerators.

