Proton Calorimetry for Proton Therapy

Simon Jolly, Ruben Saakyan, Anastasia Freshville, Laurent Kelleter University College London

HEP at UCL

- The High Energy Physics Group at University College London is one of the largest in the UK:
 - 19 academic staff.
 - 27 research and technical staff.
 - 32 PhD students.
- Research covers a wide range of experiment and theory.

- ATLAS experiment at the LHC.
- Neutrinos:
 - SuperNEMO.
 - MINOS.
 - NOvA.
 - CHIPS.
 - Ultra-High Energy Neutrino experiments.
- Dark Matter:
 - LUX.
 - LZ.
- Accelerators:
 - Proton therapy.
 - Linear collider.
 - XFEL.
- Muon experiments:
 - Muon g-2.
 - Mu2e.
- Generic detector R&D.

SuperNEMO

supernemo collaboration

- Neutrinoless double beta decay detector using NEMO3's tracker-calorimeter technique Target sensitivity: $T_{1/2} > 10^{26}$ years $\rightarrow < m_{v} >$ <0.04 – 0.1 eV
- Modular detector with a planar geometry

I module (of 20) consists of:

- Source foil:
 - 5 kg (total of 100 kg) of 40 mg/cm² (4 x 2.7 m^2)
 - ⁸²Se (high $Q_{\beta\beta}$, long $T_{1/2}^{2\nu\beta\beta}$, proven enrichment technology): starting baseline
 - ¹⁵⁰Nd and ⁴⁸Ca being considered depending on enrichment possibilities
 - Tracker: ~2000 drift cells in Geiger mode \rightarrow particle identification (for background suppression)
- Calorimeter: ~550 scintillator blocks + PMTs \rightarrow energy and time of flight measurements of particles
- Passive shielding surrounding each module

SuperNEMO Calorimeter Development

- SuperNEMO calorimeter consists of 550 Optical Modules (wrapped scintillator block + PMT).
- Needed to achieve improved resolution:
- Scintillator needed to be organic plastic:
 - High light yield.
 - Low electron back-scattering.
 - High radiopurity.
 - Fast timing.
- Extensive R&D programme resulted in final design:
 - ElJen EJ-200 polyvinyltoluene (PVT) scintillator.
 - Hamamatsu 8" PMT (32% QE at 400 nm).
 - Hexagonal scintillator block directly coupled to hemispherical PMT face.
 - Teflon + Mylar wrapping.

Optimised Optical Module

EJ-200 hexagonal PVT block:

276 mm diameter 193 mm deep, minimum thickness between PMT and scintillator: 100 mm

R5912-MOD Hamamatsu 8" PMT:

Maximum quoted QE: 33% 32% QE at 400 nm

Wrapping:

Sides: 75 μ m of PTFE (Teflon) ribbon Sides and entrance face: 12 μ m of Mylar

So What...?

- With this fantastic energy resolution of 7.5% FWHM at 1 MeV can we use a SuperNEMO Optical Module for PBT energy measurement?
- Very high intensity of events at a proton beam (10's MHz):
 - A proton beam delivers a random number of protons per bucket, which will worsen the energy resolution measured.
 - We require I proton per bucket for a good detector response.
 - But time constant of scintillator (1 ns) makes this possible.
- Scintillator quenching for protons:
 - For a plastic scintillator, the scintillator response is nonlinear with the amount of energy deposited in it.
 - Amount of deviation \rightarrow "quenching".
 - Characterised by Birk's law:

 $\frac{dY}{dx} = \frac{S}{1 + kB(dE/dx)} \times \frac{dE}{dx}$

dY/dx	light yield per unit path length
dE/dx	energy lost by particle per unit path length
kB	relates density of ionisation to energy loss
S	= 0.207 mm/MeV absolute scintillation efficiency

- Becomes important for large dE/dx and ionisation density \rightarrow important for protons, which have a large dE/dx when they slow down.

• Energy range:

- SuperNEMO optimised for electrons from 0.5 4 MeV for double beta decay.
- For proton therapy we require $\sim O(100 \text{ MeV})$.

Simon Jolly — University College London

Simulated Stopping Distance

• Simulations of SuperNEMO scintillator vs Water Equivalent:

Proton Beam Energy, MeV	Mean stopping distance, SCINT (mm)	Mean stopping distance, WATER (mm)	σ stopping distance, SCINT (mm)	σ stopping distance, WATER (mm)
60	30.21	30.54	0.33	0.33
200	255.4	257.1	2.48	2.44
300	505.9	509.9	4.64	4.78

- PVT is "water equivalent" for stopping distance and spread, as is PS.
- One to one conversion for water phantoms.
- Is this important to radiotherapy physics...?

Proton Stopping Power

- Treatment plans constructed using X-ray CT.
- Electron density is NOT the same as proton stopping power.
- Hounsfield unit conversion factor introduces range uncertainty.

Range Uncertainty (T. Lomax)

Tumour shrinkage after 5 weeks

Simon Jolly — University College London

Proton CT (N. Allinson, PRaVDA)

- Use proton imaging to reduce range uncertainties in treatment planning:
 - Measure proton entry and exit positions and trajectories with trackers.
 - Measure energy with Residual Energy Resolving Detector (range telescope or calorimeter).
 - Calculate proton most likely path to reconstruct image.

Proton CT Image Reconstruction

Simon Jolly — University College London

Proton Calorimetry

- For Proton CT, need to read out proton energy quickly and accurately:
 - Energy resolution <1% σ .
 - Rate I-10 MHz for reasonable imaging time.
- Detector requirements overlap with range QA:
 - Daily measurements are faster but less comprehensive: really just want to verify that the energy of the beam specified by the control system has the correct range in water (Water Equivalent Path Length).
 - Morning range QA normally verifies a few energies at known depths:
 - Proton counting in water-equivalent phantom.
 - Setup and measurement can be time consuming...
 - Requirements for improved QA system:
 - Better than 1% σ resolution across all energies.
 - Easier system setup and faster data acquisition and readout.

• See if SuperNEMO calorimeter works for protons...

Clatterbridge Cancer Centre

- 62 MeV Scanditronix cyclotron provides 60 MeV protons (31 mm in water) to treatment room through double scattering.
- Beam time provided for research.
- We've had 2-day shifts every few months.
- Already made interesting observations with our equipment about the treatment beam...

- Need much lower proton fluence for our measurements than clinical settings.
- Rate reduction achieved through:
 - Various collimators (0.5–10 mm)
 - Ion source gas supply.
 - lon source discharge current.
 - Cyclotron sector focussing.
 - RF phasing (wouldn't recommend it...).

Equipment Setup

Experimental Tests

Results: Fitted Data

ADC Distribution: 800V, 2 mm collimator, 100ns gate

High Rate Tests: Pulse Pile-Up

A Smaller, Faster Detector

- We have already achieved the target energy resolution: 0.7% σ with
- The next step is to do this for very high rates of I– 10 MHz with a compact design:
- Reduce the size of the PMT and the scintillator to improve timing and make the design nozzle-mountable.
- Negative HV PMT base to remove decoupling capacitor (not fast enough discharge).

2" Hamamatsu R13089-100-11 PMT with negative HV active divider base

3 cm x 3 cm x 5 cm cuboid ENVINET/NUVIA PolyStyrene standard scintillator

- Coupled with BC-630 Saint Gobain silicone optical gel
- Wrapped in 75 µm of PTFE (Teflon) ribbon on the sides and 12 µm of Mylar on the sides and entrance face

Small Module Results

ADC Distribution: -900 V, 1.98 mm collimator, 150 ns gate

Resolution: Energy Dependence

 Energy of protons incident on scintillator varied by placing absorbers (PMMA plates and calibration wheel) of known thickness ~1.8 m upstream of the optical module.

Resolution: Linearity

- We want to run the PMT at higher voltages (can run at up to -1500V) as this will increase the PMT's collection efficiency and will improve the energy resolution.
- BUT we have a LOT of light (tens of thousands of photo-electrons) so we need to make sure we are not saturating the PMT.
- Look at linearity:

Proton Energy as a Function of ADC Mean: -900V

Beam Test Conclusions

- What have we learned?
- The scintillator performs just as well for single protons as it does for electrons!
- Making the module smaller does what it's supposed to:
 - Improves timing (good measurements up to around 300kHz, compared to 1 kHz for original 8" module),
 - No detrimental effect on resolution.
- But...
 - We still can't handle rates approaching I MHz.
 - Despite Hamamatsu's promises to the contrary, we think the PMTs have a frequency-dependent gain.
- Interesting discoveries about Clatterbridge beam:
 - Nonlinear time distribution of protons (bunches of bunches...).
 - Close to nozzle edge, energy falls off.
 - Building complete simulation to compare to Clatterbridge/ UCL measurements: 2nd collimator

So What...?

- Our goal was originally to develop a calorimeter to act as the energy measurement stage for a proton CT system:
 - Needed better than 1% resolution and rates in the region of 1– 10 MHz.
 - Managed to achieve the resolution; rates limited by electronics.
 - Work will continue: discussions with PRaVDA and Loma Linde.
- Clinical steer to provide fast energy/range QA tool to work at clinical rate.
- Needs a change in design philosophy: also take advantage of water equivalence of plastic scintillator.

A Real Bragg Peak In Liquid Scintillator **UCL**

Segmented Calorimeter

- PVT and PS are both helpfully water equivalent.
- Segment block into slices and read out light from each slice individually.
- Integrate signal from many protons: very large output from 10^{10} /s.
- Minimum slice width will depend on manufacture: aiming for < 2 mm.
- Use photodiodes for readout: poor light detectors but stable and cheap with large dynamic range.
- Resolution set by slice width and variation in scintillator light output.

Segmented Calorimeter Design

- Laurent Kelleter has built preliminary model in Geant4:
 - 2 mm slices of plastic scintillator with mylar wrapping.
 - Currently integrating photodiode readout.
- STFC IPS grant application currently pending approval: working with NUVIA a.s. in Czech Republic to produce our scintillator sheets: manufacturing challenging!
- Need to characterise light quenching to reconstruct Bragg curve: pencil beams only.
- Fit to measured curve drastically improves mean range measurement: do you need range or range spread...?

dY/ dx	light yield per unit path length
dE/ dx	energy lost by particle per unit path length
kB	relates density of ionisation to energy loss = 0.207 mm/MeV
S	absolute scintillation efficiency

Simon Jolly — University College London

First Bragg curve fit to simulated 60MeV proton beam

Fast Treatment Plan Verification

- Take segmented calorimeter: add 2D tracking to front face.
- Still nozzle-mounted and self-contained.
- Read out X/Y profile and integrated range of individual pencil beams.
- Detector read out fast enough to match minimum spot dwell time (3–20 ms).
- Fast reconstruction of water-equivalent treatment plan.

TERA: Proton Range Radiography

- Don't need to prove the principle using scintillator sheets: TERA have done it for us!
- Proton Range Radiography:
 - Gas Electron Multiplier (GEM) tracking.
 - 2 mm PVT scintillator sheets fibre coupled to Silicon PhotoMultipliers.
- Can't use this exact setup:
 - Designed for single protons for pCT.
 - They get "good enough" proton range by looking at end-of-range only.
 - SiPMs expensive, high gain devices: not appropriate for high light output with full beam intensity.

Simon Jolly — University College London

Future Plans

- Continue development of single calorimeter module for proton CT and lower rate applications:
 - Well characterised.
 - The fewer channels the better: single block also means more light per proton per detector.
- Work on segmented calorimeter design to produce water equivalent path length detector:
 - Resolution better than 2 mm: much better with appropriate fit.
 - "Immediate" readout (a few seconds).
 - Need >150 sheets for 32 cm: start with 20 sheets and do fast measurement at Clatterbridge.
- Full design aims to be gantry mounted: can characterise multiple fields.
- Fast treatment plan verification very promising, but needs work to get segmented calorimeter working before adding tracking:
 - Tracking and range measurement need to be fast enough to read out data with suitable resolution within spot dwell time.
 - Needs electronics to synchronise.

Acknowledgements

• UCL

- Ruben Saakyan
- Anastasia Basharina-Freshville
- Laurent Kelleter
- Matthieu Hentz
- Andreas Christou
- Adam Knoetze
- Roisin Stephens
- Derek Attree
- UCLH
 - Richard Amos
 - Paul Doolan

- Clatterbridge
 - Andrzej Kacperek
 - Andy Wray
 - Ian Taylor
 - Brian Marsland
- The Christie/Manchester
 - Ran Mackay
 - Hywel Owen
 - Karen Kirkby
- PSI
 - Tony Lomax
 - Marco Schippers

UCL

Spare Slides

Simon Jolly — University College London

Geant4 Simulations

- A pencil proton beam (60 MeV) simulated, positioned
 70 cm from the entrance face of the scintillator block.
- Scintillator modeled as a square block (256 mm x 256 mm x 120 mm) with scintillator composition fully described.
- Quenching of scintillation light in plastic scintillator for protons.
- Energy deposited smeared according to Poissonian fluctuations in the number of generated photo-electrons.
- The number of photo-electrons per MeV taken from test bench data (SuperNEMO calorimeter R&D): 982 photoelectrons per MeV (for an energy resolution of 7.5% FWHM at I MeV).

Simulation Results

- Quenching from simulations:
 - Simulated mean: 39.3 MeV
 - Quenching: 35% for 60 MeV protons

Energy resolution from simulations:

 ΔE

E

 2.35σ

E

σ:0.247, *μ*:39.28

Δ E/E: 1.48 % FWHM

Experimental Tests

Simon Jolly — University College London

Results: Raw Data

Resolution: Energy Dependence

 Energy of protons incident on scintillator varied by placing absorbers (PMMA plates) of known thickness ~1.8 m upstream of the optical module

Energy Resolution as a Function of Proton Energy: 800V

Radiation Damage

 Total estimated radiation dose received by 2" OM: 0.25 Gy.

• No noticeable difference in resulting energy resolution so far.