
Bringing HEP Detector Technology to 

the Clinic: 
Development of the Quality Assurance 

Detector for Proton Beam Therapy 

(QuADProBe)

Joseph J. Bateman

University College London



Cancer Treatment With Radiotherapy

• Radiotherapy main curative 

modality in ~40% of cancer.

• Cell death occurs through 

DNA damage.

• Absorbed dose ∝ Damage to 

DNA 

• Ultimate goal – maximise

radiation dose to tumour

whilst minimising dose to 

healthy tissue – therapeutic 

window.
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Radiotherapy Treatment Room
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Radiotherapy Treatment Room
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VMAT Radiotherapy
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Radiotherapy Dose Deposition
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Particle Dose Distribution

• Unlike X-rays, 

charged 

particles stop!

• Electrons, 

being lighter, 

scatter and 

spread out.

• Protons deposit 

most dose at 

the end of their 

path: the 

Bragg Peak.
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Particle Dose Distribution

• Protons can be ‘painted’ over 

the tumour depth since their 

stopping range depends on 

energy.

• About 70 – 230 MeV is 

sufficient energy to cover 

entire range of tumour depths. 

• A plateau is created over the 

tumour by superimposing 

Bragg peaks at different 

energies and intensities.
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UCLH Proton Therapy
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UCLH Proton Therapy Facility

Cyclotron

Beamline Corridor

Treatment Rooms
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Gantry

Images courtesy of UCLH/Varian Inc. (not for reproduction)



Scanning The Bragg Peak
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Proton vs Photons

IMRT PBT
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PBT QA

• Since the dose is heavily localised with PBT, extensive quality 

assurance (QA) needs to performed on the proton beams to 

ensure the dose is delivered exactly where it needs to be. 

• 4 key quantities to verify in proton therapy QA:

–  Dose

–  Range (i.e. energy of the proton beam)

–  Spot Size

–  Spot Position 
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PBT Machine QA Detectors
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Speed

Robustness



UCL HEP to PBT

• Since 2011, involvement has grown 
from facility design assistance to 
detector development.

• What technological solutions will 
assist clinical workflow? Proton CT, 
Quality Assurance.

• SuperNEMO experiment measures 
beta decays from radioactive 
source with high precision:
– Plastic scintillator modules record beta 

energy with nanosecond timing.

• What applications in PBT are there 
for fast water equivalent plastic 
scintillator…
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QuADProBe

QuARC

SciFi

Tracker

J Bateman, UCL HEP: Proton Beam Therapy



The QuARC

• The Quality Assurance Range Calorimeter 
(QuARC) constructed from plastic 
scintillator:
– Protons intercepted by a series of optically-

isolated polystyrene scintillator sheets.

– Measure light output with photodiodes.

– Light output of each sheet nonlinear to dose, but 
quenching described by Birks’ Law:

• Fit data with analytical depth-light model.
• Reconstruct Bragg depth-dose curve and measure 

proton range.

– Photodiodes coupled to fast, modular 
electronics and an FPGA to read light levels at 
over 5 kHz.

– FPGA connects to on-board PC (Raspberry Pi) 
via USB.

– Connection to on-board PC via ethernet/WiFi.

• Key benefits:
– Plastic scintillator inexpensive and water-

equivalent.

– Range reconstructed with single beam delivery.

– Easy detector setup and no optical artefacts.
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SciFi Profile Monitor

• 2 orthogonal 10 cm x 10 cm arrays made of 

BCF-60 plastic scintillating fibres by Saint-

Gobain, 0.50 ± 0.13 mm diameter. Emission 

peak at 530 nm.

• 128-photodiodes array (Hamamatsu S13865), 

single and cascade operation. Image size: 51.2 

x 0.6 mm, pixel pitch 0.4 mm

• Hamamatsu C9118-02 CMOS driver circuit 

provides multiplexed data at up to 4 MHz

• Analogic video output from the pixels array 

readout using NI USB-6366 Multifunction I/O

• In low gain the dark output voltage is typ. 0.005 

mV, max 0.1 mV

• The saturation output voltage is min. 3 V typ 3.5 

V

• MCLK 1 MHz. Suggested min. reset time 10us 

and suggested min. integration time 17+4x128 

clocks = 529 us.

• FPGA high period of RESET clock (reset) = 50 

us, low period (integration) 950 us
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The NPL Transmission Calorimeter (TC)

• Results:
– Linear response with 

dose in 3 x 3 x 3 cm3 
cube

– Measures 
1.96± 0.04 mK for 
10 Gy delivery

– Performance evaluated at 
different dose rates and 
different energies

• A thin aluminium core with embedded 
thermistors
– 45 mm diameter

– 0.6 mm thickness, approximately 1.2 mm WET

– High performance 7 W/mK thermal conductivity 
dielectric PCB connecting thermistors

• Twin core design:
– Primary core to measure radiation-induced 

temperature change

– Secondary core to compensate for ambient 
temperature fluctuations
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QuARC Design Brief

• Able to make direct range 
measurements.

• Quick to set up: mountable to 
clinical nozzle.

• Robust: will survive a clinical 
environment.

• Easy to use: simple set up and 
interface.

• No software installation: on-board 
DAQ controlled through web 
browser.

• Easy to maintain: modular 
assembly so repair and upgrade 
straightforward.
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UCLH Beam Tests

• Beam tests at UCLH to evaluate 
photodiode performance with 
clinical beams.

• Detector setup with 4 modules 
(32 sheets, 96 mm total depth 
per module) to test pencil beam 
energies between 70–245 MeV.

• Determine range reconstruction 
accuracy and demonstrate fast 
live range reconstruction 
capabilities with web GUI.

• Pristine Bragg peaks, SOBP and 
position variation.
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Detector Calibration

245 MeV, front245 MeV, back

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖 =
𝑆𝑇𝑏𝑎𝑐𝑘 𝑖 + 𝑆𝑇𝑓𝑟𝑜𝑛𝑡[𝑖]

2
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Detector Calibration

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖 =
𝑆𝑇𝑏𝑎𝑐𝑘 𝑖 + 𝑆𝑇𝑓𝑟𝑜𝑛𝑡[𝑖]
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Bragg Peak: 100 MeV

J Bateman, UCL HEP: Proton Beam Therapy



Bragg Peak: 100 MeV
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Bragg Peak: 100 MeV
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Bragg Peak: 100 MeV
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More Bragg Peaks

245 MeV170 MeV
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Energy Comparison
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SOBP

Reconstructed Bragg Curve for all BPs
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QuARC Position Measurements
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Trento Beam Test Summary and Prelim Results 

• 3 nights of measurements in the 

research room at Trento PTC

– Night 1: QuARC 

• Calibrations and Bragg Peak measurements 

scaling current up to FLASH (briefly).

– Night 2: Combined QuARC + SciFi:

• Dynamic range testing (fibres at low gain)

• Beam position measurements 

– Night 3: SciFi Measurements

• Dynamic range testing (fibres at low gain)

• Different spot sizes (varying energy)
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SciFi Measurements 
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148 MeV 300 nA Profiles at Low Gain and High Gain

Low 

gain

High 

gain
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70 MeV 300 nA (max ion source current) High Gain
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228 MeV 5 nA High Gain
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228 MeV 300 nA High Gain
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Position measurements using stage translation at 148 MeV 

300 nA 
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Response Linearity at 148 MeV (using Amplitude of Gaussian Fit on 

Horizontal Array)

Low gain High gain

J Bateman, UCL HEP: Proton Beam Therapy



Kria SciFi Readout
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Kria QuADProBe Readout
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Conclusions

• Making our way towards a clinically usable QuARC:

– Only 2 cables needed for setup.

– Web browser interface.

– Robust enclosure with built-in shock absorption.

– Nozzle mount and improved electronics in the pipeline.

• R&D on QuADProBe progressing rapidly:

– SciFi arrays installed at HIT; new fibre arrays on their way.

– Updated electronics provides complete system integration.
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