
UNIVERSITY COLLEGE LONDON

University Of London

Improving Quality Assurance of Proton

Beam Therapy by advancing pulse signal

analysis.

by

Andreas Angelis CHRISTOU

Supervisors: Dr. Simon Jolly and Prof. Ruben Saakyan

DEPARTMENT OF PHYSICS AND ASTRONOMY

MASTERS THESIS

March 2017
Gower St, London, WC1E 6BT

1

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)

University College London, Gower Street, London WC1E 6BT
Tel: +44 (0)20 7679 2000
email@ucl.ac.uk
www.ucl.ac.uk

Title Date

Received
Examiner Examiner’s Signature MARK

UCL DEPARTMENT OF PHYSICS AND ASTRONOMY

Submission of coursework for Physics and Astronomy course PHASM201/PHAS3400

Please sign, date and return this form with your coursework by the specified deadline to the Departmental Office.

DECLARATION OF OWNERSHIP

I confirm that I have read and understood the guidelines on plagiarism, that I understand the meaning of
plagiarism and that I may be penalised for submitting work that has been plagiarised.

I confirm that all work will also be submitted electronically and that this can be checked using the JISC
detection service, Turnitin®.

I understand that the work cannot be assessed unless both hard copy and electronic versions of the
work are handed in.

I declare that all material presented in the accompanying work is entirely my own work except where
explicitly and individually indicated and that all sources used in its preparation and all quotations are
clearly cited.

Should this statement prove to be untrue, I recognise the right of the Board of Examiners to recommend what
action should be taken in line with UCL’s regulations.

Signed ___

Print Name ___

Dated ___

2

Andreas Angelis Christou

27/03/2017

Acknowledgements

First and foremost, thank you to my supervisors, particularly Simon for listening to me

rabbit on and asking an endless number of questions. Thank you to everyone in the

PBT group for your knowledge and patience. Thank you to my family for the support.

Thank you to the university gang for making sure I wrote this thesis and tolerating my

random moods. Finally, thank you to the squad for the late night sessions enduring my

insults and idiosyncracies throughout the past couple years, kept me going the whole

way through.

3

Abstract

The improvement of the quality assurance (QA) procedures in Proton Beam Therapy

will lead to significant benefits in the treatment room. Foremost amongst these will be

the reduction in time taken to prepare the beam for treatment which will in turn lead to

a greater volume of patients being treated daily. This project aims to improve the QA by

aiding in the development of fits that can be used for precise determination of the energy

resolution of the beam, and also aiding in the automation of data processing/analysis

tasks that will need to be carried out before the energy resolution can be determined.

The results of this project have yielded a fit with χ2 values that have a range of 2 − 5

and the project has also yielded scripts that automatically sort input data into sets that

can be used for analysis and those that cannot be used.

4

List of Figures

1.1 This graphic displays the various volumes that are of importance in con-

ventional radiotherapy using X-Rays. As can be seen the irradiated vol-

ume is actually much larger than the Gross Tumour Volume which leads

to many healthy cells being irradiated. (Taken from [7]) 10

1.2 This figure depicts dose depositions of different particles as a function of

the WEPL(Water equivalent path length)[17] 11

2.1 This figure depicts the energy loss of multiple charged particles in air as

calculated using Eq. 2.1. [22] . 13

2.2 This graphic displays a typical dose deposition pulse for a proton beam.

The Bragg Peak can clearly be seen at the end of the signal. (Taken from

[24]) . 14

2.3 This figure depicts the relative dominance of the photon interaction modes

that take place with matter[25]. 15

2.4 This graphic displays a plot of the Bragg peak of three beams of varying

energies travelling through polyethelene. As can be seen, an increase

in energy leads to a greater penetration depth. However, the greater

energy also leads to a larger amount of fragmentation taking place when

compared with ionisation energy loss[23]. 16

2.5 This graphic displays a SOBP produced via the usage of absorbers with

n = 10 leading to the required energy stacking[32]. 17

3.1 This graphic displays one of the detector modules for SuperNEMO. From

left to right the module consists of a calorimeter wall containing photo-

multiplier tubes, a tracker, the source foil, and then another tracker and

calorimeter wall. (Taken from [36]) . 19

4.1 This figure depicts the Landau and Vavilov distributions for the non-

relativistic case. The y axiss depicts the probability of the detected num-

ber of photoelectrons corresponding to the energy I, with the x axis de-

picting the number of photoelectrons detected[40] 26

5

4.2 This figure depicts one of the ADC spectra produced from the experimen-

tal runs. The data taken is shown in blue, the Gaussian fit can be seen

faintly around the peak in black, and the convolution fit is shown in red. . 28

4.3 This figure depicts a plot using the improved ROOT macro file with an

equivalent range of ±4σ but with four times as many calculated points in

the convolution integral. 29

4.4 This figure depicts a plot using the original ROOT macro file with a range

of ±4σ. 29

5.1 This figure depicts an example of a waveform pulse that contains multiple

peaks. As can be seen the peak that would be investigated would be the

second, larger peak. Due to the initial smaller peak overlapping with the

main peak it would be impossible to differentiate the two. 31

5.2 This figure depicts an example of an ADC spectrum that has been repro-

duced from scope waveform data. The data in question had 54 rejected

pulses due to multiple peaks out of a total 9216 pulses. 34

6.1 This figure depicts the ADC spectrum produced from the original fit file

for run 019. The wheel position for the acquisition of this data was

165. Note that this position is directly before the Bragg peak position of

166. A clear discrepancy can be seen throughout most of the curve, as

demonstrated by the extremely large χ2 value. 36

6.2 This figure depicts the ADC spectrum produced from the improved fit file

for run 019. The wheel position for the acquisition of this data was 165.

Note again that this position is directly before the Bragg peak position

of 166. Improvements have been made to the discrepancies, however they

have not been completely removed. 36

6

Contents

Acknowledgements 3

Abstract 4

List of Figures 5

1 Introduction 9

1.1 Cancer Treatment Modalities . 9

1.1.1 Surgery and Chemotherapy . 9

1.1.2 Radiotherapy . 10

1.2 Proton Beam Therapy . 12

2 Proton Beam Therapy 13

2.1 The Bethe Formula . 13

2.2 Interactions in Proton Therapy . 14

2.3 The Bragg Peak . 15

2.4 Imaging and Treatment . 17

3 Methodology 19

3.1 The Detector . 19

3.2 The Project . 20

3.2.1 Preliminaries . 20

3.2.2 ADC Data . 21

3.2.3 Waveform Scope Data . 22

3.2.3.1 Binary Conversion . 22

4 ADC Spectra Analysis 24

4.1 The Landau Distribution . 24

4.2 The Vavilov Distribution . 25

4.3 Fitting . 26

4.4 The Convolution Integral . 27

4.5 Improving the fit . 28

4.6 ADC Spectrum Results . 29

5 Waveform Pulse Analysis 31

5.1 Multi-peak Signals . 31

5.2 Waveform Pulse Fitting . 32

5.3 Reproduction of an ADC Spectrum . 33

5.4 Waveform Analysis Results . 33

6 Conclusions 35

6.1 ADC Analysis Summary and Further Work 35

7

6.2 Waveform Analysis Summary and Further Work 36

Bibliography 38

A Results 42

A.1 ADC Spectrum Results . 42

B Written Code 51

B.1 ADC Spectrum Fit Macro . 51

B.2 Binary Data Conversion Jar . 61

B.3 Waveform Analysis Macro . 77

8

Introduction
Within the UK alone in 2014 there were over 300, 000 new cases of cancer. There were

also over 100, 000 deaths due to cancer within the same year. The survival rate for

cancer (where survival is defined as living for 10 or more years) in 2010− 11 was 50%.

Meanwhile only 42% of these cases were preventable[1]. These figures alone demonstrate

the necessity for improvement in cancer treatment methods. Cancers also have a high

occurrence rate in the elderly [1], particularly hard to treat cancers such as pancreatic

cancer[2]. Incidences of hard to treat cancers in both elderly and young patients have re-

quired the development of improved treatment modalities to help combat the increasing

number of cases. These treatment modalities are required to be less invasive (to reduce

the probability of side effects), more greatly localised (with regards to radiotherapy in

particular to reduce the probability of a secondary cancer developing due to treatment),

whilst also leading to better quality of life for the patient post-treatment.

1.1 Cancer Treatment Modalities

Conventional cancer therapy consists of three main modalities; radiotherapy, chemother-

apy, or surgery. In general, with malignant cancers, the greatest success with treatment

is achieved if multiple modes are used for therapy at once [3].

1.1.1 Surgery and Chemotherapy

Surgery is the excision of a tumour surgically. This is most commonly used if the cancer

is localised and it is likely that all of the cancer can be removed. One of the major ad-

vantages of surgery compared to the other two modes is that there is very little chance

of any long term side effects. However, some research has shown that there may be

adverse effects on patients as surgery may cause perioperative tumour growth [4].

The next treatment is chemotherapy. This involves treatment of cancers via the use of

drugs that have multiple effects on the biology of tumour cells that can interrupt their

metabolism or their cell cycle. Chemotherapy has an advantage that it can target tu-

mour cells specifically based on the cell type. However a current issue with chemotherapy

is that some tumours are seemingly becoming resistant to the drugs used [5]. A major

disadvantage of chemotherapy is that it involves usage of drugs that are metabolised

(some of which may be neurotoxic[6]), therefore it is not restricted to treating a single

area, but rather affects the whole body, thereby normally causing side effects in treated

patients.

9

Introduction 10

1.1.2 Radiotherapy

The final treatment mode is radiotherapy. Radiotherapy most commonly uses X-Rays,

although other particles can be used, and has a significant advantage over chemotherapy

in that it targets a smaller fraction of the patients body due to it being a localised form

of treatment. However, radiotherapy is not cell specific in the same way as chemother-

apy. Therefore, this can lead to healthy cells being damaged throughout the treatment

process if they are in line with the beam path, because of the way that photons interact

with matter (the dose deposition profile of the beam). The irradiation of healthy cells

can then lead to complications or side effects later on in the patients life. The reason

for this is that, when conducting radiotherapy using X-Rays, there are a variety of dif-

ferent volumes that need to be targeted to ensure that the tumour is treated correctly,

as shown below in Fig. 1.1.

Figure 1.1: This graphic displays the various volumes that are of importance in con-
ventional radiotherapy using X-Rays. As can be seen the irradiated volume is actually
much larger than the Gross Tumour Volume which leads to many healthy cells being

irradiated. (Taken from [7])

However because of the extra volume targeted, healthy cells are also killed. Conven-

tional radiotherapy has been developed to produce modern methods such as Intensity

Modulated Radiotherapy (IMRT)[8], Volumetric Modulated Arc Therapy(VMAT)[9] or

Image Guided Radiotherapy (IGRT)[10], which reduce the amount of radiation delivered

to healthy tissues.

IMRT involves the adjustment of the strength of the radiation beam as necessary via

the usage of treatment planning software to increase the dosage delivered to the tumour,

whilst reducing the dosage delivered to healthy cells surrounding the tumour[8]. VMAT

involves the usage of a linear accelerator attached to a rotating gantry that delivers a

three dimensional dose profile to the tumour, thereby ensuring there is a more precise

Introduction 11

dosage delivery[9]. Finally, IGRT involves the usage of imaging throughout treatment to

aid radiotherapists in locating the tumour, and also adjusting the treatment as necessary

to account for tumour movement, such as for tumours in lung cancer[10][11]. Modern

methods also involve the usage of fractionation, the splitting of treatment into multiple

sessions, therefore reducing the overall dosage delivered in one session, which is beneficial

to patients as it takes advantage of the fact that healthier cells will recover faster than

cancer cells, whilst also sparing cells that are not as radiosensitive as tumour cells[12].

However with certain cancers, such as medulloblastoma[13] or prostate cancer[14], this

can lead to serious complications as these areas of the body are near vital organs with

tissues that are highly radiosensitive and thus may not recover from any damage inflicted

by the therapy.

Photons also demonstrate an exponential decrease in energy as the depth of penetration

increases (thereby leading to a lower dose as shown in Fig. 1.2) which means that the

majority of the ionising radiation is deposited superficially and therefore higher doses

would need to be given to treat tumours that are located deep within the body. Photons

also do not stop passing through the body once the dose is deposited in the tumour,

therefore leading to an exit dose [15] which can lead to a greater proportion of healthy

tissue being damaged, however modern methods have begun to improve upon this[8][9]

which is now leading to patients having a better quality of life post-therapy due to re-

duced toxicity[16].

Figure 1.2: This figure depicts dose depositions of different particles as a function of
the WEPL(Water equivalent path length)[17]

An issue that is currently present in all forms of conventional radiotherapy is that,

in general, enough imaging does not take place. An initial CT scan will be conducted on

the patient to image the tumour, with less precise scans carried out at intervals through-

out the treatment to monitor the progress. This means that throughout treatment, any

movement by the patient or movement of the tumour will affect the treatment area

and can therefore lead to the probability of side effects being increased, especially with

Introduction 12

cancers such as prostate cancer or lung cancer. However, this has been improved upon

using methods such as IGRT[10], and can also be further improved using Proton beam

therapy.

1.2 Proton Beam Therapy

Proton beam therapy is another form of radiotherapy that is currently used for hard to

treat cancers (e.g. ocular melanoma)[18]. The procedure involves using an accelerator

which provides a large number of protons which possess a very specific energy. The en-

ergy of the protons produced via this method may also be roughly mono-energetic which

is beneficial in reducing the dosage to other tissue outside the site of the tumour[19].

This procedure has been present for some time[20] and has advanced significantly to be-

come a prescribed treatment method. Protons are considered a form of hadron therapy,

which involves the usage of protons, neutrons, or other heavy ions[21]. The usage of

heavy ions provides significant advantages over the use of photons and light ions (e.g.

electrons) due to the narrower scattering of the particle[20] as, unlike photons which

interact via the Compton effect[21], heavier ions do not undergo such large amounts of

scattering, therefore losing less energy as they slow whilst travelling through matter[21].

Proton Beam Therapy

2.1 The Bethe Formula

The main advantage with using protons is the depth of deposition of the energy is

intrinsically linked to the energy of the protons as they enter the body. This relationship

is described by the Bethe (Eq. 2.1) formula, where E is energy, x is distance into the

target, v is the particle velocity, z is the particles charge in multiples of electron charge,

n is electron number density, I is mean excitation potential, β is v
c , c is the speed of light,

ε0 is vacuum permittivity,e is electron charge, and finally me is the electron rest mass.

This demonstrates that, to first order, the penetration depth is directly proportional to

velocity and therefore energy.

−
〈
dE

dx

〉
=

4π

mec2
nz2

β2

(
e2

4πε0

)2 [
ln

(
2mec

2β2

I(1− β2)
− β2

)]
(2.1)

Figure 2.1: This figure depicts the energy loss of multiple charged particles in air as
calculated using Eq. 2.1. [22]

Proton beam therapy improves upon one of the significant issues still present within

conventional radiotherapy where a proportion of healthy tissue is irradiated in addition

to the tumour. This benefit is not limited to protons, but applies to all charged particles,

and can be seen in 2.1. However, as seen in Fig. 1.2 and Fig. 2.2 protons have a sharp

Bragg peak (discussed in greater detail in Sec. 2.3). The heavier the ion the sharper

the peak; however, as can be seen in Fig. 1.2, heavier ions have a longer trailing tail

therefore leading to a deposition of energy in healthy cells beyond the tumour. This

however is not described by the Bethe formula but is due to the fact that heavier ions

also undergo nuclear interactions[23].

13

Proton Beam Therapy 14

2.2 Interactions in Proton Therapy

Various interactions take place when using heavy ions for radiotherapy that are sig-

nificantly different to those that take place when using photons. The most significant

interaction modes for photons are dependant on the energy of the incident photon and

the atomic number of the incident material[25]. For low energies, the photoelectric effect

is dominant, the Compton effect dominates for intermediate energies, and pair produc-

tion dominates for high energies, as shown in Fig. 2.3[25]. Protons (and other heavy

ions) also undergo ionisation interactions where energy is imparted from the projectile

ion to the orbital electrons of the atoms in the target material via Coulomb interactions.

These interactions are correctly defined by the Bethe formula and the formula correctly

accounts for the increase in the Linear Energy Transfer (LET) until the energy of the

incoming ion decreases below a threshold, after which a significant decrease in the LET

is seen[23][26]. This significant decrease in the LET is known as the Bragg peak and

occurs approximately before the ions come to rest[24].

Heavy ions also undergo nuclear interactions that are ultimately described by quan-

tum chromodynamics (QCD) as it is a many body problem involving the composite

particles of the nucleons themselves (quarks)[23]. However due to the many body na-

ture of this problem, computational modelling is difficult to conduct, therefore multiple

semi-empirical models have been produced[27]. In nuclear fragmentation, the incoming

particle can cause two types of fragmentation, depending on if the incoming ion contains

only one particle or if it is a nucleus.

The two types are ”projectile” and ”target” fragments[23]. Projectile fragments are

simply particles that are formed from the incident nucleus after a collision has taken

place. These fragments commonly retain a significant fraction of the velocity of the inci-

dent ion. However, there may be some slight deviations in the velocity, with the change

Figure 2.2: This graphic displays a typical dose deposition pulse for a proton beam.
The Bragg Peak can clearly be seen at the end of the signal. (Taken from [24])

Proton Beam Therapy 15

Figure 2.3: This figure depicts the relative dominance of the photon interaction modes
that take place with matter[25].

in the Cartesian coordinate being modelled by a normal distribution[23][27].Target frag-

ments are formed from the expulsion of nucleons from atoms within the target material.

These fragments, which may be charged or neutral (which may penetrate long distances),

will emerge from the struck nucleus potentially in an excited state. They will then de-

cay into the ground state, causing further emission of particles. These fragments are

emitted isotropically in the rest frame and can affect the dose, especially if neutrons are

emitted[23]. If neutrons are produced then this further affects the dosimetry as they

may cause the production of further high LET secondary particles[23].

The target fragments have a significant effect on dosimetry as they lead to the changing

of the particle fluence of the initial incoming beam from a beam of pure primary ions

into a beam of mixed heavy and light ions that may also contain neutrons. This can then

lead to a broader energy distribution which is an explanation for the broad straggling

tail that is seen in energy distribution plots as shown in Fig. 2.2[28]. There are signifi-

cant differences between using heavy ions such as Carbon atoms, and light ions such as

protons. Foremost amongst these is that there is an increased LET for heavier ions (as

shown in Fig. 2.4) which leads to an increase in relative biological effectiveness. Also

the heavier the ion, the higher the probability of inelastic nuclear interactions taking

place, leading to a greater chance of fragmentation, again shown in Fig. 2.4[28].

2.3 The Bragg Peak

The final aspect of proton beam therapy that must be described further is the Bragg

peak. A monoenergetic beam of protons will produce a Bragg peak at a specified depth,

as has been shown previously. However, a monoenergetic beam is not sufficient for

Proton Beam Therapy 16

Figure 2.4: This graphic displays a plot of the Bragg peak of three beams of varying
energies travelling through polyethelene. As can be seen, an increase in energy leads to
a greater penetration depth. However, the greater energy also leads to a larger amount

of fragmentation taking place when compared with ionisation energy loss[23].

cancer treatment due to the narrow longitudinal Bragg peak[29]. A solution to this is

the application of a spread out Bragg peak (SOBP) which allows uniform dosage to be

applied within the target volume by providing a weighted energy distribution as the

incident beam[29]. The weighting of the individual proton beams is determined using

the power law relationship that relates the range R of the protons to their initial energy

E(z = 0) = E0 as shown in Eq. 2.2.

R = αEp0 (2.2)

where α is roughly proportional to
√
Aeff with Aeff being the effective atomic mass of

the absorbing medium. This is known as the Bragg-Kleeman rule[30] and it should be

noted thatα is also inversely proportional the mediums mass density[31]. The exponent

p0 defines the shape of the curve of Eq. 2.2 and also determines the energy range for

which Eq. 2.2 is valid. For example, a value of p = 1.5 (known as Geiger’s rule) is

valid for protons with energies ≤ 10MeV , whilst for 10 < E0 < 250MeV a value of

p ≈ 1.8 is more appropriate[31]. Research carried out by [31] determined that, for the

most relevant energies (0 ≤ E0 ≤ 200MeV) the best fit values of the constants are, for

a water phantom; p ≈ 1.77 and α ≈ 0.0022. In order to produce a SOBP, the range

χ of the SOBP must be determined (which will be equivalent to the tumour width,

length, and depth for a 3d volume). Once determined, χ will be divided into n equal

intervals where n is the number of beams to be used. The SOBP will then extend from

(1 − χ)R0 to R0, where R0 will be the depth of the highest energy proton beam (and

the edge of the SOBP)[29]. The ranges of each beam are then given by Eq. 2.3, with

their respective energies given by Eq. 2.4 (which is Eq. 2.2 rearranged for Ek with

the constants possessing the same definition as in Eq. 2.2), and the normalised weights

of the beams given by Eq. 2.5 where p is used instead of p0 to allow the variable to

vary[29]. The weights calculated using this method define the fractional weighting of

Proton Beam Therapy 17

a proton beam possessing an initial energy as defined by the parameter p0. It is of

significance to note that the value of p0 also affects the value of χ[29].

rk =
[
1−

(
1− k

n

)
χ
]
R0 (2.3)

Ek =
(rk
α

) 1
p0 (2.4)

wk =


1−

(
1− 1

2n

)1− 1
p
, for k = 0[

1− 1
n

(
k − 1

2

)]1− 1
p −

[
1− 1

n

(
k + 1

2

)]1− 1
p
, for k = 1, ..., n− 1(

1
2n

)1− 1
p
, for k = n.

(2.5)

Fig. 2.5 depicts an example of a SOBP produced using absorbers of varying widths

to transform protons from a monoenergetic beam into protons with varying energies

weighted by Eq. 2.5 that will then sum to produce the depicted SOBP[32]. It can

clearly be seen that a beam with this dose distribution would be preferable over the

standard Bragg peak distribution as uniform dose can be applied over a predetermined

range.

Figure 2.5: This graphic displays a SOBP produced via the usage of absorbers with
n = 10 leading to the required energy stacking[32].

2.4 Imaging and Treatment

If used correctly, the Bragg peak can allow for better treatment of tumours due to the

fact that the LET significantly decreases after the Bragg peak, allowing for a greater

amount of the ions energy to be deposited within the tumour volume, with a minimal

amount of dose leakage due to secondary particles produced by fragmentation. However,

to carry out this treatment, precise imaging must take place to correctly determine the

depth of the tumour within the patient as the energy of the proton is directly related to

the penetration depth as described by Eq. 2.1. If a detector was developed that could

Proton Beam Therapy 18

process high rates of protons efficiently and with a very precise energy resolution then

this detector could also be used as a scanner by using a beam of higher energy protons

to image the tumour as a form of proton computed tomography (pCT) with the patient

located in situ[33][34]. A prototype proton computed radiography (pCR) device has

been tested and can be developed further to produce a pCT device[35]. The method of

producing a CT scan using protons would be a similar process to that used for x-ray CT

scanning, albeit slightly more difficult due to the fact that protons will undergo multiple

coulomb scattering because of their charge[35]. These areas are key advantages of using

protons rather than photons for radiotherapy as, although imaging takes place in IGRT

and IMRT throughout treatment using CT scanners mounted to the gantry[9], this does

not remove the issue of exit dose leakage due to the photons.

A current issue with proton beam therapy centres is that a large proportion of time

is spent setting up the equipment to ensure that the correct depth is reached by the

protons for an assortment of energies. These are the quality assurance (QA) proce-

dures that provide assurance that the beam is functioning correctly and are essential

for determining that the energy is being deposited at the site of the tumour rather than

anywhere else. The aim of this project is to reduce the amount of time spent carrying

out the QA procedures by leading to the development of an advanced detector that will

allow varying energy measurements to be carried out at a greater rate.

Methodology
The group is directly involved with the development of the proton beam therapy centre

at UCLH. The beam design that has been proposed is a narrow ”pencil” beam that will

allow for a better conformal dose to be delivered to the tumour volume. The dosage

will be delivered throughout the whole tumour volume by scanning the pencil beam

across the target tumour. The group is currently focussed on the development of a new

detector (adapted from the SuperNEMO detector), and also the improvement of current

procedures to allow for faster and more accurate QA measurements that are carried out

multiple times throughout a treatment day.

3.1 The Detector

The detector that is being developed has been adapted from the SuperNEMO experi-

ment, which in turn was developed from the NEMO3 experiment. These detectors used

a tracker-calorimeter technique to identify particles and determine their energy [36]. A

schematic of one of the detector modules is shown in Fig. 3.1. The tracker modules

are used primarily for particle identification. They consist of numerous drift cells that

operate in Geiger mode [37].

Figure 3.1: This graphic displays one of the detector modules for SuperNEMO. From
left to right the module consists of a calorimeter wall containing photomultiplier tubes,
a tracker, the source foil, and then another tracker and calorimeter wall. (Taken from

[36])

The next module of the detector that is of importance with regards to Proton Beam

Therapy is the calorimeter. The original NEMO3 calorimeter units consisted of a scin-

tillator which was coupled to low radioactivity photomultiplier tubes and also included

19

Methodology 20

lightguides [38]. The scintillator material was polystyrene which was chosen because it

would reduce back-scattering of low energy electrons due to polystyrene containing a low

Z value when compared to other scintillators [39]. The SuperNEMO calorimeter design

is slightly different. Rather than using polystyrene as the scintillator material it instead

uses polyvinyl-toluene and does not make use of lightguides[37]. The main function of

the scintillator is to determine the energy of incoming particles via measurement of light

that is emitted due to the collision of the incoming charged particles causing photon

emission from the scintillator material molecules.

The calorimeter is the part of the detector that is the focus of this project. The en-

ergy resolution of the calorimeter is the parameter that is of importance as, a small

energy resolution means that the energy of the protons is known with great precision

and therefore implies better QA.

3.2 The Project

The overarching task that was conducted throughout this project was the data analysis

of the current data taken by the Proton Beam Therapy group throughout August 2016

at the Clatterbridge therapy centre. This involved the development of scripts that

can automatically analyse pulses to fit and produce required data (such as the energy

resolution of the beam), reject ”bad” pulses from the analysis, and scripts to convert

data files into readable formats.

3.2.1 Preliminaries

The initial tasks of the project involved the installation of Scientific Linux, in order

to allow for the usage of ROOT. ROOT is a program that contains a large number of

libraries that are useful for the statistical analysis of large data sets in the High Energy

Physics field. Upon installation of the operating system, it then had to be set up with

the required packages that were necessary to install ROOT. This required multiple days

to complete before the ROOT installation could be carried out. Once ROOT was suc-

cessfully installed, various tutorials were used to gain the required familiarity with it to

begin the analysis of the data. A secondary task that was also conducted was the deter-

mination of if ROOT was the most appropriate package to be used for the data analysis.

A competitor was the software package PyROOT. It was determined that ROOT would

be used as, in essence, PyROOT is simply a Python wrapper for the ROOT libraries.

This means that developing in PyROOT rather than ROOT would simply be a matter

of preference of using Python over C++ however, as there were no issues with C++

(and previous analysis had been done in ROOT) it was unnecessary to change software

Methodology 21

packages.

Once the software environment had been established, the next step was to understand

the raw data files that were being analysed. Data from the beamline was taken via two

distinct methods. The first method was via the usage of a Caen Analog-Digital converter

(ADC), and the second method involved the usage of a LeCroy oscilloscope. Each of

these will be spoken about in greater detail below.

3.2.2 ADC Data

The Caen Analog-Digital converter reads the response of the detector and automatically

combines the individual pulses recorded within a range specified by the user by carrying

out the charge integration to produce an ADC spectrum from the data which can then

be fitted to in order to determine the energy resolution from the full width half max-

imum (FWHM) of the curve. The charge integration was carried out over a specified

”long gate” which may span up to 150ns.

The gate was defined as starting immediately before the trigger time, the time at which

the proton is being detected by the detector, and ended shortly after the voltage returns

to the baseline value. The integration was carried out automatically by the converter

over the specified gate. This method had a significant drawback as, the converter itself

is not capable of determining if there is a pile up of signals within the detector. A pile

up is when multiple particles are detected at once. This can lead to multiple peaks being

recorded and integrated in the same long gate, which can lead to an imprecise value of

the energy resolution being calculated.

The ADC data was taken with a high voltage of −900V , this remained constant for all

data sets taken. A 1.98mm collimator was also used. The variables that were changed

throughout the data collection process were: the rate, some of the electronic setup data,

the absorber size, and the arc current. The rate corresponds to the number of protons

making up the beam. This was varied to determine the response of the detector to both

high and low rates as, one of the aims is to produce a detector that is capable of pro-

cessing high proton rates. The absorber size is also a relevant variable that was varied.

This corresponds to the modulator wheel position that is placed in front of the beam

to attenuate the energy of the beam. Each segment of the wheel is 4mm in thickness,

therefore a wheel position of 10 would correspond to 40mm thickness. In some cases a

block of PMMA was used instead of the wheel.

Methodology 22

3.2.3 Waveform Scope Data

A LeCroy HDO6000 oscilloscope was used for the collection of the waveform data. The

waveform pulse data was also taken with similar parameters to the ADC spectrum data.

The waveform data is a record of the charge variation in the detector with respect to

time. This data is recorded by the scope, however, because of the high rate of protons

that are detected, the scope does not have the capability of recording the waveform

data in ASCII format. Because of this, the data taken for all recorded waveforms was

consolidated into a single binary file to allow for efficient data recording. However, this

presented significant issues that had to be dealt with before the analysis of the data

could take place.

Foremost amongst these issues was the fact that, because of the consolidation, the

recorded timebase was a continuous spectrum. There was no distinction within the bi-

nary data that would allow for easy determination of when one waveform ended and

another began. This presented an issue because, in order to carry out the analysis it

would be necessary to read the waveform pulses into ROOT individually to be analysed.

A secondary issue was that the oscilloscope itself also cannot distinguish between wave-

forms containing multiple peaks and those with only a single clear peak. This means

that multiple waveform files exist within the binary file that also exhibit the piling up

of the pulses that was discussed in the previous section.

3.2.3.1 Binary Conversion

In order to analyse the waveform data, a program had to be written with multiple func-

tionalities. The first required function was the efficient conversion of the binary data

into an ASCII format that could be input directly into ROOT without any need for

further conversion. Using a template provided by LeCroy, a Java program was written

that would allow the data to be converted. This program took advantage of various

addresses that were defined in the header of the binary file that detailed the location of

any relevant information that was required for the conversion e.g. the horizontal interval

of the timebase etc. Despite the template provided by LeCroy, there are a number of

variables with defined addresses that are unknown quantities.

The second required functionality was the splitting of the single binary file into individ-

ual ASCII files for every waveform file contained. The difficulty with this, as mentioned,

was the continuous timebase spectrum. In order to split the files, the number of lines

stored in the binary file was determined from the header, and the approximate length

Methodology 23

(in lines) of each pulse was determined from the average time at which the trigger would

end and return to the baseline. This information was then used to split the binary file

into individual data files with the timebase reset for each file and spanning 0 − 400ns

with intervals of 0.4ns. An additional function that was included was the option to

specify the number of files to be converted from the binary file. This was included to

allow for initial plotting of the pulses to be undertaken to determine the quality of the

files included in the data. The current version of the program is depicted in Appendix

B.2. Upon completion of the program, the binary files were converted with each file

containing 127000 individual pulses and taking 1hr to completely convert.

ADC Spectra Analysis
The ADC data is stored in simple text files that contains the number of events for each

ADC count record as recorded by the digitiser. This data is imported by ROOT to

produce a simple histogram depicting the data. The code used to import the data is

based on a previously used ROOT macro that has been adapted as shown in Appendix

B.1. Initially, the code was studied to better understand how it functions and to also

precisely determine the underlying issues that were affecting the results. It was found

that the issue with the fitting was that the fit was not able to span the whole range of

the data as it could not precisely model the straggling edge of the spectrum. This issue

with the fit not being applicable to the whole spectrum was noticed as the calculated χ2

value would continuously worsen as the range of the fit was increased. Because of this

issue, the range of the fit in the original macro was restricted to ±2σ

4.1 The Landau Distribution

Before discussing the fitting, it is important to mention the probability distributions

that are used. With regards to the passage of ionising particles through matter, there

are three main distributions that are relevant as, the process of energy loss via ionisation

of particles is a statistical one, and therefore can only be described by probability distri-

butions. The interaction processes that have been previously described can significantly

affect the resolution of the calorimeter as these interactions may take place in the active

layers with these interactions causing significant fluctuations in the energy deposited

within these layers.

The probability function that describes the probability (f(E, x∆)) of a particle of en-

ergy E passing through a medium with thickness x to lose energy that is between ∆

and ∆ +d∆ must satisfy the kinetic equation 4.1 where; w(ε) is the probability per unit

length for a particle with energy E to lose an amount of energy ε during a collision[40].

∂f(E, x,∆)

∂x
=

∫ b

0
w(E + ε, ε)f(E + ε, x,∆− ε)dε− f(E, x,∆)

∫ εmax

0
w(E, ε)dε (4.1)

The Laplace transform of the energy loss distribution satisfying Eq. 4.1 can be described

by Eq. 4.2 where F is the probability density function, and t is the time at which the

collision takes place[40].

φ(t) = lnF (x, t) = −x
∫ εmax

0
w(ε)(1− exp−tε)dε (4.2)

24

ADC Spectra Analysis 25

Eq. 4.2 was solved by Landau by using the collisional probability Eq. 4.3[41].

xw(ε) =
ξ

ε2
(4.3)

where

ξ =
2πNq2qe

4ρx

meβ2
ΣZ

ΣA
(4.4)

In Eq. 4.4; N is Avogadros number, me and qe the mass and charge of the electron

respectively, β the velocity of the incident particle and q its charge, ρ the density of the

medium, and finally Z and A the atomic mass and number of the component elements of

the target material. An assumption that affects this solution is that the incident particles

are highly relativistic. This is described by allowing the integral of Eq. 4.2 to have an

upper limit of infinity[41]. However, due to this assumption, the Landau distribution

does not have a finite mean or standard deviation[40]. The assumption leads to the

inclusion of a non-physical contribution where the incident particle can have an infinite

energy transfer to the electrons of the medium. Because of this the Landau distribution

must have a specified cut off when being calculated to prevent unphysical results from

being obtained[40].

4.2 The Vavilov Distribution

It is also of note that another probability distribution exists that improves upon the work

of Landau by removing the assumption that the incident particle is highly relativistic[42].

This distribution, known as the Vavilov distribution, is suitable for non-relativistic par-

ticles and uses the collision probability Eq. 4.5 rather than Eq. 4.3[40].

xw(ε) =
ξ

ε2

(
1− β2 ε

εmax

)
(4.5)

where εmax is the maximum energy that can be transferred within a collision. This

distribution can be considered to be more precise due to the limitation of the upper

bound of the integral in Eq. 4.2. Both distributions are complex, however the Vavilov

distribution requires an integral to be calculated in the complex plane which leads to it

being more computationally intensive to calculate when compared to the Landau dis-

tribution. It should also be noted that for large values of εmax the Vavilov distribution

tends towards the Landau distribution[42].

The introduction of the significance parameter κ = ξ
εmax

allows an inequality to be

introduced to approximate when either distribution should be used. If x is large then κ

will also tend to increase, and vice versa if x is small. The respective inequalities are; if

ADC Spectra Analysis 26

κ < 0.01 then the Landau distribution is applicable, and if 0.01 < κ < 10 the Vavilov

distribution is applicable. A Gaussian distribution may also be used to approximate the

energy loss distribution if κ > 10 (for example when the mean energy loss within the

scintillator material is greater than the maximum energy transfer in a single collision).

It is of note that the value of κ is directly dependant on the thickness of the absorber

in question. A Gaussian distribution is most appropriate for thick absorbers whilst the

Landau and Vavilov distributions are more applicable for thin absorbers, as is the case

for the detector used by the group where the main absorber is a thin film of Mylar[43].An

example depicting both the Landau and Vavilov distributions can be seen in Fig. 4.1.

As can be seen, the Landau distribution has a long, straggling tail whereas the Vavilov

distribution has a more pronounced cutoff point. The κ value was calculated for the

Mylar of the detector, using the AutoZeff software to determine the relative molecular

mass of the substance. The subsequent calculation led to the conclusion that, for the

thickness of Mylar used in the detector, the Landau distribution is currently the most

appropriate.

Figure 4.1: This figure depicts the Landau and Vavilov distributions for the non-
relativistic case. The y axiss depicts the probability of the detected number of pho-
toelectrons corresponding to the energy I, with the x axis depicting the number of

photoelectrons detected[40]

.

4.3 Fitting

The fitting of the data involves the integration of the Landau distribution. This distribu-

tion is used in conjunction with a Gaussian distribution to compute a Landau-Gaussian

convolution integral for each x coordinate in the spectrum. Initially, a Gaussian fit is

applied over a small range of the spectrum with the normal being set to the height of

ADC Spectra Analysis 27

the peak of the number of events, the µ being set to the ADC counts number of the peak

value, and the σ being set to
√
µ. These initial values are used to determine the σ value

of the distribution as ROOT varies the parameters of the initial fit in order to reduce

the χ2 value of the initial fit. However, it is of note that the initial is only carried out

over ±2σ with σ being the value previously specified. Therefore, the initial fit is only ac-

curate over the width of the peak and does not apply to the data values beyond the peak.

For the final Landau-Gaussian convolution fit, there are 6 parameters; the width of

the left hand side of the distribution (which is set to 1 by default with no variation),

the most probable location of the parameter describing the Landau density (which is

set to the µ value calculated from the parameter variation of the initial Gaussian fit),

the left hand normal of the distribution (which is set to the value of the distribution

peak as calculated from the initial fit), the σ of the full distribution (which is set to the

value calculated from the initial fit), the width of the right hand side of the distribution

(which is set to 1 initially), and finally the right hand normal of the distribution (which

is initially sent to 100). Parameters 3 and 4 also have specified limits of 0 − 1000 and

0 − 100000000 which defines the limits of variation that ROOT will conduct for the

parameters.

4.4 The Convolution Integral

The Landau-Gaussian fit makes use of a convolution integral. This mathematical tech-

nique is defined as shown in Eq. 4.6 where; f and g are functions of the variable x

(where, for the purposes of this fitting x is the ADC counts number), and x̃ is a dummy

integration variable that is used to define an arbitrary translation of the function g(x).

f(x) ∗ g(x) =

∫ ∞
−∞

f(x̃)g(x− x̃)dx̃ (4.6)

The concept of the convolution integral is to produce a third function, h(x), that may

be viewed as being the area overlap between the function, f(x), and the mirror of the

function, g(x), where, with regards to our fit, f(x) is the Gaussian distribution of the

ADC counts, and g(x) is the Landau distribution of ADC counts.

The reason that this fit is used is based on the characteristics of the curves that have

been produced from the experimental data as shown in Fig. 4.2. From Fig. 4.2, it can

clearly be seen that the area around the peak of the curve approximates a Gaussian

distribution. This is also even more apparent as the initial fit of the Gaussian around

ADC Spectra Analysis 28

Figure 4.2: This figure depicts one of the ADC spectra produced from the experimen-
tal runs. The data taken is shown in blue, the Gaussian fit can be seen faintly around

the peak in black, and the convolution fit is shown in red.

the peak very closely follows the data. The long tail that begins the curve is also rem-

iniscent of the long straggling tail that is present in the Landau distribution, as seen

in Fig. 4.1, hence why the Landau distribution is used as the mirror function in the

convolution integral.

4.5 Improving the fit

As previously mentioned, the original fit being used was not able to span a large range of

the fit. In order to rectify this issue, the original fit was thoroughly studied to determine

if any mistakes had been made mathematically that may have affected the calculation

of the convolution. The initial fit was also studied to determine if the initial parameters

used could be determined more precisely which would allow the final fit to converge

faster. The initial fit was adjusted, with a ROOT function being used to determine the

absolute location of the peak of the data. Various mathematical changes were also made

to the method used to calculate the convolution integral e.g. the addition of an extra

Gaussian term in order to account for an issue where the peak of the fitting curve did

not align with the peak of the fitted data, however this led to little improvements.

A final improvement attempt was to increase the precision of the convolution integral

by rewriting the macro such that for each individual ADC counts point, between the

upper and lower bounds of the integration, the numerical integration was divided into

a larger number of slices, therefore leading to a more precise result being produced for

the value of h(x).

ADC Spectra Analysis 29

4.6 ADC Spectrum Results

An example of a fit using the improved macro is shown in Fig. 4.3 with an original fit

depicted in Fig. 4.4 for reference. The three main characteristics of the ADC spectra

are; the peak, the straggling curve at the beginning of the curve, and the shorter decay

curve at the end. Fig. 4.3 clearly depicts an improvement in the fit at all three points

of the curve. There is no deformity in the fitted peak when compared to that shown

in Fig. 4.4. The fitted curve also more closely matches the experimental data towards

either edge of the curve. The improvement in the fitting is also clearly indicated by the

fact that the χ2 value has decreased by a factor of almost 2.4 (from 3.7 to 1.6). It is of

note that, although the fit has significantly improved, the greater amount of calculations

required is computationally intensive, leading to each fit taking almost twice as much

time as was previously required. The fit was applied to all data taken from the August

2016 Clatterbridge run, with a clear improvement in the goodness of fit demonstrated

in all of the fitted data when compared to the original fit over the same range. A fit

could also be produced for a larger range of the data, indicating an improved fit.

Figure 4.3: This figure depicts a plot
using the improved ROOT macro file
with an equivalent range of ±4σ but
with four times as many calculated

points in the convolution integral.

Figure 4.4: This figure depicts
a plot using the original ROOT
macro file with a range of ±4σ.

Res = 2.35 · 100 · σ
µ

(4.7)

∆Res =

√
∆µ

µ

2

· ∆σ

σ

2

(4.8)

The energy resolution is calculated from the fit using Eq. 4.7 and has an associated

error as shown in Eq. 4.8. The changes that were made to the fit led to the energy

ADC Spectra Analysis 30

resolution of the fitted files increasing but with a decrease in the associated error of the

energy resolution. This indicates that the previously calculated energy resolutions were

not as precise as possible due to limitations of the fit.

Waveform Pulse Analysis
Upon conversion of the binary files, work could begin on the analysis of the waveform

data. The waveform data was stored in individual files with the only two columns

retained from the binary file being the timebase value and the voltage value. The units

for each of these readings was ns and mV respectively however, the data was stored

as integers rather than in standard form to allow for efficient storage. The number of

decimal points was also conjugated to prevent the storage of additional numbers that

were due to the conversion from a binary value to a floating point number. A ROOT

macro was then written that was capable of reading each waveform in individually and

producing a plot to depict the data. The macro also determines the peak voltage value

and then loops over all the voltage values, adding the magnitude of the peak value to

each one to make the signal a positive one for convenience. The key work that needed

to be done on the waveform data was the automation of a technique that could be used

to detect ”bad” waveforms.

5.1 Multi-peak Signals

Multi-peak signals occur when there are multiple particles triggering the scintillating

material, leading to the detection of multiple peak signals by the detector. These multi-

peak signals can be seen in data taken from a wide range of rates. The reason they

are considered to be bad is because they cannot be easily fit to and also are not easily

integrated to allow for the reproduction of an ADC spectrum as it is not clear when one

of the pulses ended and the second or third one began. An example bad peak is depicted

in 5.1. As can be seen there is a very distinct overlap between the two signals, which

further demonstrates the difficulty of either fitting or integrating this data. In order

Figure 5.1: This figure depicts an example of a waveform pulse that contains multiple
peaks. As can be seen the peak that would be investigated would be the second, larger
peak. Due to the initial smaller peak overlapping with the main peak it would be

impossible to differentiate the two.

to develop a script that would automatically detect and remove these peaks, research

31

Waveform Pulse Analysis 32

was conducted into the built in statistical libraries that ROOT possesses in order to

determine if any of the methods were relevant in this area. The required method would

need to have a variable argument to account for the possibility that the peaks may not

be separated by a standard amount. The research conducted yielded the TSpectrum

class in ROOT. This class has a search algorithm that makes use of the Markov chain

algorithm taken from [44] that were developed to find m peaks from an m-dimension

spectrum. The algorithm searches for peaks based on two user specified variables; the σ

of the peaks to be searched, and a threshold value T . The σ value details the distance

from the main peak that the algorithm will search up to for any secondary peaks whilst

the T value details how large a peak should be, as a fraction of the largest peak, before it

is discarded. These values may vary based on the waveform data that is being processed,

however, thus far it seems that a value of σ = 1 and T = 0.5 is sufficient to determine any

secondary peaks. Values of T < 0.5 led to points in the curve being detected as peaks re-

gardless of their position whilst values of σ > 1 led to no secondary peaks being detected.

The search for multi-peak signals is carried out as the data is read into the TTree

structure. If the function returns Npeaks > 1 then the histogram is added to a TTree

containing only the bad signals that will be rejected from any further processing. The

histograms are still drawn for reference to ensure that the removed signals are multi-peak

signals. Fig. 5.1 is an example of a detection of a multi-peak signal using the method

described above.

5.2 Waveform Pulse Fitting

After the processing of the waveforms, work began on the fitting of the waveform data.

Although this work is yet to be completed, a brief outline of the methods being applied

is outlined below. The form of the curve observed on the oscilloscope can be described

approximately by Eq. 5.1 where; G is the gain of the PMT, N is the number of photo-

electrons emitted by the cathode, e is the charge of the electron, τs is the decay constant

of the scintillator, R is the resistance of the PMT, τ = R
C where C is the capacitance,

and finally t is the time variable. Eq. 5.1 describes how the voltage signal produced

from a photomultiplier tube (PMT) varies with time[43].

V (t) =


−GNeR

τ−τs

[
exp

(
− t

τs

)
− exp

(
− t

τ

)]
for τ 6= τs

(
GNeR
τs2

)
t exp

(
− t

τs

)
for τ = τs

(5.1)

Waveform Pulse Analysis 33

Eq. 5.1 is a double exponential decay function with dependencies that are intrinsically

related to the circuit of the PMT[43]. An attempt was made to fit the data with a

Gaussian and a single exponential function, as shown in Appendix B.3. The Gaussian

part of the function seemed to be an appropriate fit for the initial segment of the curve,

before the peak of the data was reached. After the peak, the exponential part would

then be used to fit the rest of the curve. However, an appropriate functional form for

the exponential could not be determined meaning that the fitting of the waveform data

remained incomplete. Further work will need to be conducted in this area to determine

the correct functional form of the single or double exponential decay as described in Eq.

5.1.

5.3 Reproduction of an ADC Spectrum

The final part of the waveform analysis that was also attempted, although as of yet

is incomplete, is the reproduction of an ADC spectrum via the usage of the waveform

scope data. The aim of this is to produce an ADC spectrum without the ”bad” pulses

that may be included when the Caen ADC device is used to produce a spectrum and

then compare the two to see how much of an effect the pile up of pulses may cause,

if any. The reproduction of an ADC spectrum takes place by following the previous

procedure of the removal of any pulses that include multiple peaks. After this, an in-

ternal ROOT function is used to calculate the integral of each pulse included in the

data set containing single peak waveforms individually. The integration is numerical,

and therefore does not require a fitted function. The integration took place between

a user specified long gate of 80 − 250ns. It should be noted that this long gate may

not be applicable to all of the waveforms as the trigger time is not consistently the same.

The integration takes place over the specified window of charge to produce an ADC

number (a value that would have units of mV s) that is treated as being without units.

This value is directly related to the energy of the proton that caused the pulse. The

integral is calculated for all pulses and stored in a vector structure in ROOT. This vector

is then sorted from smallest to largest and is looped over to determine how many times

each integral appears. This value is the number of ADC events value and is stored in a

separate vector.

5.4 Waveform Analysis Results

An example ADC spectrum produced using this method is displayed in Fig. 5.2. As can

Waveform Pulse Analysis 34

Figure 5.2: This figure depicts an example of an ADC spectrum that has been repro-
duced from scope waveform data. The data in question had 54 rejected pulses due to

multiple peaks out of a total 9216 pulses.

be seen in Fig. 5.2, there are multiple issues. Foremost amongst these is the lack of a

continuous spectrum in the ADC data. The data displayed only has 273 entries out of a

total number of pulses of 9162 (excluding pulses containing multiple peaks). This may

be a clear indicator that the integration that was carried out may not be of a sufficient

precision to determine if the ADC number of two waveforms is distinct. The spectrum

is also clearly skewed towards higher energy protons which is another indicator of the

integration value most likely being incorrect. The expected distribution would be the

Landau-Gaussian convolution due to the fact that the protons will have suffered energy

loss whilst travelling through the medium before the detector, therefore leading to an

attenuated signal. A potential explanation for the low entry number may be that, in

comparison with other files, the scope data said had 10 times less waveforms. However,

this does not explain the significant skew that can be seen, nor does it explain why only

3% of the pulses were recognised as being distinct.

Conclusions

6.1 ADC Analysis Summary and Further Work

The first part of the project involved the improvement of the analysis of the ADC spec-

tra. The result of this analysis has yielded an improved fit in all data sets that have been

analysed thus far as demonstrated by the χ2 value showing a significant decrease and

tending towards 1. In turn, this shows that a fit following the form of a Landau-Gaussian

convolution is appropriate. However, further work can be done with regards to the fit-

ting to allow for even greater improvements. Firstly, as has been previously suggested,

the significance parameter κ can be calculated for all absorbing materials that occupy

the medium directly before the detector. This will then allow for the correct assertion of

whether or not the Landau distribution is the most appropriate energy loss distribution

for the data or if the Vavilov distribution may be more suitable. The ROOT macro

could also be adapted to allow for automatic determination of κ which would then be

used to select the relevant distribution.

Furthermore, it has been demonstrated that the number of steps used in the convo-

lution integral is of high importance with regards to precise determination of the energy

resolution. Improvements to this area of the code displayed in Appendix B.1 allowed

the significant decrease in the χ2 value. However, a limitation on the increase in the

number of steps is the amount of time taken to process the spectrum data. Further work

can be conducted into the convolution integral, determining if the order of the integral

is correct, and also if the offset that has been defined is of the correct order. Once

this has been complete, various numerical integration methods can be applied such as

Simpson’s rule, which allows improvements in the precision of an integral to be made by

increasing the accuracy of the functions that approximate the integrand rather than the

decreasing of the step size[45]. The Gaussian quadrature rule[45] may also be used as

libraries already exist in languages such as Pythons SciPy which may have equivalents

within ROOT. The development of a more efficient integration algorithm will lead to

even greater speed within the QA procedures.

Despite the noticeable improvements in the results, there are still some discrepancies.

As shown for the data in Fig. 6.1, the fitted curve displays severe differences when

compared with the data, leading to an enormous χ2 value. The improved fitting shown

in Fig. 6.2 demonstrates a significant improvement, albeit with large variations between

the fit and the data still present. These variations seem to be present most abundantly in

the data runs with the higher wheel settings (> 150) however, the distribution remains

35

Conclusions 36

a Landau-Gaussian and should still be roughly approximated by the fit. The reason for

this is currently unknown and requires further investigation. A potential explanation

could be due to the constraints that are placed on some of the parameters that are used

in the fit. The width of the curve on the left hand side and the normalisation constants

for both the left and right hand side of the curve have constraints placed on them within

the code. The fitting should be conducted again without the constraints or with the

limits increased to determine if these restrictions are leading to the observed fluctua-

tions on the curve. It should also be noted that the range of the fitting (±4σ) extends

beyond the curve which may also explain the poor fitting as points may be included in

the parameter variation that ROOT automatically carries out but these points may not

appear in the curve. The macro used to fit the data could be adjusted to automatically

determine the most appropriate range to fit over, ensuring that the fit does not extend

beyond the length of the curve.

Figure 6.1: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 019. The wheel po-
sition for the acquisition of this data
was 165. Note that this position is di-
rectly before the Bragg peak position
of 166. A clear discrepancy can be
seen throughout most of the curve, as
demonstrated by the extremely large

χ2 value.

Figure 6.2: This figure depicts
the ADC spectrum produced from
the improved fit file for run 019.
The wheel position for the ac-
quisition of this data was 165.
Note again that this position is di-
rectly before the Bragg peak posi-
tion of 166. Improvements have
been made to the discrepancies,
however they have not been com-

pletely removed.

6.2 Waveform Analysis Summary and Further Work

The second part of the project was the processing and analysis of waveform files. The

first result of this section yielded a Java program (shown in Appendix B.2) that is capable

of swiftly converting the LeCroy scope binary files and also includes other functionality.

The program is capable of converting a binary file containing 127, 601 files in 1hr which

is an improvement over previous conversion attempts. The total file size has also been

Bibliography 37

reduced due to the removal of unnecessary information throughout processing. Further

improvements can be made to the Java file to improve the efficiency of conversion. For

example the program could be rewritten as a multithreaded jar which would reduce the

amount of time taken to convert each file. Improvements are also going to be made as

further information has been received detailing how to retrieve individual waveform seg-

ments from a continuous spectrum. This will allow for the definition of each individual

waveform file to be more precise, rather than the current method being used where a

new file is produced for every 1000 lines of text in the binary file.

The second aim of the waveform analysis that was also completed was the development

of a program that automatically identifies any multi-peak pulses. Preliminary results

on the analysed file shown in Fig. 5.2 demonstrate a low ratio of bad to good pulses

with only 54 pulses being rejected. However, further work will need to be conducted on

the section of the program (shown in Appendix B.3) that reproduces an ADC spectrum.

The preliminary result only contains 273 entries from a total number of 9216 pulses.

This is an indication that there may be an issue with the integration method used not

being precise enough i.e. the rounding of the integrated value may cut-off decimal places

that are required to distinguish pulses. The code also needs to be rewritten to subtract

the baseline of the pulse to prevent the tail of the curve from affecting the integration.

The determination of the baseline value could potentially be implemented via the usage

of another method in the TSpectrum class that can be used to determine background

noise. Once this is determined, the pulse will be subtracted from the background and

then the integration can be carried out. One final improvement that can be made is the

reproduction of ADC spectra using the various long gates that are used by the Caen

converter (50, 100,and 150ns). The subtraction of the baseline may also correct the skew

that can be seen in Fig. 5.2 as the skew may be due to the integration including values

from the straggling tail. Once this has been done, the ADC fitting code (Appendix B.1)

can be applied to the reproduced fits to determine the energy resolution for comparison

to the equivalent ADC spectrum.

Overall the project has aided in the improvement of the QA methods that will be used

in future PBT treatments via the development of multiple programs that can be used to

further data analysis. Although further work needs to be conducted to ensure that the

programs have all required functions, they have significantly advanced the processing

of both types of data that are currently being taken and are particularly useful due to

either precision or efficiency improvements.

—————————————————————-

Bibliography
[1] Cancer Statistics for the UK, 2017. http://www.cancerresearchuk.org/health-

professional/cancer-statistics.

[2] Paul E Oberstein and Kenneth P Olive. Pancreatic cancer: why is it so hard to

treat? Therapeutic advances in gastroenterology, 6(4):321–37, jul 2013.

[3] D R Beil and L M Wein. Analysis and comparison of multimodal cancer treatments.

IMA journal of mathematics applied in medicine and biology, 18(4):343–76, dec

2001.

[4] JC Coffey, JH Wang, MJF Smith, et al. Excisional surgery for cancer cure: therapy

at a cost, 2003.

[5] Herbert M Pinedo and Giuseppe Giaccone. Chemotherapy. The Lancet, 349:S7–S9,

1997.

[6] Lisa M DeAngelis and Jerome B Posner. Side Effects of Chemotherapy. In Neuro-

logic Complications of Cancer, chapter 12, pages 447–510. Oxford University Press,

oct 2011.

[7] R. Gahbauer, T. Landberg, J. Chavaudra, et al. 1 INTRODUCTION. Journal of

the ICRU, 4(1):21–24, jun 2004.

[8] Vedang Murthy and Alan Horwich. Intensity Modulated Radiation Therapy. Eu-

ropean Journal of Cancer, 40(16):2349–2351, nov 2004.

[9] Karl Otto. Volumetric modulated arc therapy: IMRT in a single gantry arc. Medical

Physics, 35(1):310, 2008.

[10] David A. Jaffray. Image-guided radiotherapy: from current concept to future per-

spectives. Nature Reviews Clinical Oncology, 9(12):688–699, nov 2012.

[11] T Gupta and C Anand Narayan. Image-guided radiation therapy: Physician’s

perspectives. Journal of medical physics, 37(4):174–82, oct 2012.

[12] H. Rodney Withers. Biologic basis for altered fractionation schemes. Cancer,

55(S9):2086–2095, may 1985.

[13] Joo-Young Na, Min-Cheol Lee, Shin Jung, et al. A mass lesion in the skull after

radiotherapy for medulloblastoma. Neuropathology, 32(5):583–585, oct 2012.

38

Bibliography 39

[14] Hoppe Bradford, Henderson Randal, Mendenhall William M., et al. Proton Therapy

for Prostate Cancer. Oncology, 25(7):644–650,652, 2011.

[15] W P Levin, H Kooy, J S Loeffler, et al. Proton beam therapy. British Journal of

Cancer, 93(8):849–854, oct 2005.

[16] Abrahim Al-Mamgani, Wilma D. Heemsbergen, Stephanie T.H. Peeters, et al.

Role of Intensity-Modulated Radiotherapy in Reducing Toxicity in Dose Escala-

tion for Localized Prostate Cancer. International Journal of Radiation Oncol-

ogy*Biology*Physics, 73(3):685–691, 2009.

[17] Uli Weber and Gerhard Kraft. Comparison of Carbon Ions Versus Protons. The

Cancer Journal, 15(4):325–332, jul 2009.

[18] Bertil Damato, Andrzej Kacperek, Mona Chopra, et al. Proton beam radiother-

apy of choroidal melanoma: The Liverpool-Clatterbridge experience. International

Journal of Radiation Oncology*Biology*Physics, 62(5):1405–1411, 2005.

[19] Edward C. Creutz and Robert R. Wilson. MonoEnergetic Protons from a Cyclotron.

Review of Scientific Instruments, 17(10):385–388, oct 1946.

[20] J. M. Leggate. Proton-beam Therapy. BMJ, 1(5118):363–364, feb 1959.

[21] Yi Rong and James Welsh. Basics of Particle Therapy II Biologic and Dosimet-

ric Aspects of Clinical Hadron Therapy. American Journal of Clinical Oncology,

33(6):646–649, dec 2010.

[22] Vsevolod V. Balashov. Interaction of particles and radiation with matter. Springer,

2012.

[23] Cary Zeitlin and Chiara La Tessa. The Role of Nuclear Fragmentation in Particle

Therapy and Space Radiation Protection. Frontiers in oncology, 6:65, 2016.

[24] Harald Paganetti and Thomas Bortfeld. Proton Beam Radiotherapy -The State of

the Art 1.

[25] Ervin D. Podgorsak and International Atomic Energy Agency. Radiation oncol-

ogy physics : a handbook for teachers and students. International Atomic Energy

Agency, 2005.

[26] Harold Elford. Johns and John Robert. Cunningham. The physics of radiology.

Charles C. Thomas, 1983.

[27] J.W. Wilson, J.L. Shinn, L.W. Townsend, et al. NUCFRG2: A semiempirical nu-

clear fragmentation model. Nuclear Instruments and Methods in Physics Research

Section B: Beam Interactions with Materials and Atoms, 94(1):95–102, 1994.

Bibliography 40

[28] Armin Lühr, David C Hansen, Ricky Teiwes, et al. The impact of modeling nu-

clear fragmentation on delivered dose and radiobiology in ion therapy. Physics in

Medicine and Biology, 57(16):5169–5185, aug 2012.

[29] David Jette and Weimin Chen. Creating a spread-out Bragg peak in proton beams.

Physics in Medicine and Biology, 56(11):N131–N138, jun 2011.

[30] Robley Dunglison Evans. The atomic nucleus. R.E. Krieger, 1982.

[31] Thomas Bortfeld. An analytical approximation of the Bragg curve for therapeutic

proton beams. Medical Physics, 24(12):2024–2033, dec 1997.

[32] Lindsay G. Jensen, Loren K. Mell, Christin A. Knowlton, et al. Spread-Out Bragg

Peak (SOBP). In Encyclopedia of Radiation Oncology, pages 809–810. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013.

[33] M. Prall, M. Durante, T. Berger, et al. High-energy proton imaging for biomedical

applications. Scientific Reports, 6(November 2015):27651, jun 2016.

[34] V. A. Bashkirov, R. W. Schulte, R. F. Hurley, et al. Novel scintillation detector

design and performance for proton radiography and computed tomography. Medical

Physics, 43(2):664–74, 2016.

[35] V. Sipala, M. Bruzzi, M. Bucciolini, et al. A proton imaging device: Design and

status of realization. Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment, 612(3):566–

570, 2010.

[36] Anastasia Freshville. Calorimeter R&D for the SuperNEMO double beta decay

experiment. Nuclear Instruments and Methods in Physics Research, Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, 623(1):255–257,

2010.

[37] A. Basharina-Freshville. Search for the neutrinoless double beta decay of 100Mo with

the NEMO3 detector and calorimeter research and development for the SuperNEMO

experiment. PhD thesis, 2012.

[38] Ruben Saakyan, the NEMO3 Collaborations, SuperNEMO, et al. Topological de-

tection of double beta decay with NEMO3 and SuperNEMO. Journal of Physics:

Conference Series, 179(1):012006, jul 2009.

[39] Matthew B Kauer. Search for the double beta decay of Zr-96 with NEMO-3 and

calorimeter development for the SuperNEMO experiment. PhD thesis, 2010.

Bibliography 41

[40] D. Besset. PROPERTIES OF THE PRIMARY IONIZATION OR PHO-

TOELECTRON DISTRIBUTION FOR AN ENERGY LOSS DETECTOR.

Nucl.Instrum.Methods, 1985.

[41] L. Landau. On the energy loss of fast particles by ionization. J.Phys.(USSR),

8:201–205, 1944.

[42] P.V. Vavilov. Ionization losses of high-energy heavy particles. Zh.Eksp.Teor.Fiz.,

32:749–751, 1957.

[43] William R. Leo. Techniques for nuclear and particle physics experiments : a how-to

approach. Springer, 1994.

[44] Miroslav Morháč, Ján Kliman, Vladislav Matoušek, et al. Identification of peaks in

multidimensional coincidence γ-ray spectra. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 443(1):108–125, mar 2000.

[45] K. F. (Kenneth Franklin) Riley, M. P. (Michael Paul) Hobson, and S. J.

(Stephen John) Bence. Mathematical methods for physics and engineering. Cam-

bridge University Press, 2006.

Results

A.1 ADC Spectrum Results

Figure A.1: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 039 with a rate of
7kHz. This set of data had a 13.4mm
PMMA block in position upstream of
the beam. The beam was shifted dur-

ing this set of data.

Figure A.2: This figure depicts
the ADC spectrum produced from
the improved fit file for run 039.
The energy resolution has slightly
increased but with a decreased er-
ror. There is a discrepancy be-
tween the peak of the fit and the

data.

Figure A.3: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 029. The rate of
the beam for this run was 20kHz. The
wheel was set to 0 and there was no

PMMA present.

Figure A.4: This figure depicts
the ADC spectrum produced from
the improved fit file for run 029.
The peak of this fit seems to
match more closely than the origi-
nal fit. There was no improvement

in the resolution error.

42

Appendix A: Results 43

Figure A.5: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 001. The rate of
the beam for this run was 25kHz. The
wheel was set to 0 and there was no

PMMA present.

Figure A.6: This figure depicts
the ADC spectrum produced from
the improved fit file for run 001.

Figure A.7: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 027. The rate of
the beam for this run was 25kHz. The
wheel was set to 0 and there was no

PMMA present.

Figure A.8: This figure depicts
the ADC spectrum produced from
the improved fit file for run 027.

Figure A.9: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 028. This run was
to determine the background radiation
with the beam off and the wheel posi-

tion at 0.

Figure A.10: This figure depicts
the ADC spectrum produced from
the improved fit file for run 028.
Any differences seen here are not
of particular relevance as the par-

ticles may not be protons.

Appendix A: Results 44

Figure A.11: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 032. The rate was
25kHz. A 7.24mm PMMA block was
used here corresponding to a wheel po-

sition of 40.

Figure A.12: This figure de-
picts the ADC spectrum produced
from the improved fit file for run
032. The discrepancy between the
peak and the fit seems to have im-

proved.

Figure A.13: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 035. The rate was
12kHz. A 7.24mm PMMA block was
used here upstream of the beam corre-

sponding to a wheel position of 40.

Figure A.14: This figure depicts
the ADC spectrum produced from
the improved fit file for run 035.

Figure A.15: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 037. The rate was
25kHz. A 13.4mm PMMA block was
used here. Beam issues led to the ac-

tual rate being 20kHz.

Figure A.16: This figure depicts
the ADC spectrum produced from
the improved fit file for run 037.
The rate was 25kHz. Beam is-
sues led to the actual rate being

20kHz.

Appendix A: Results 45

Figure A.17: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 005. The rate was
25kHz. A wheel position of 20 was

used.

Figure A.18: This figure depicts
the ADC spectrum produced from
the improved fit file for run 005.

Figure A.19: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 006. The rate was
25kHz. A wheel position of 40 was

used for this run.

Figure A.20: This figure depicts
the ADC spectrum produced from
the improved fit file for run 006.

Figure A.21: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 007. The rate was
25kHz. A wheel position of 60 was

used for this run.

Figure A.22: This figure depicts
the ADC spectrum produced from
the improved fit file for run 007.

Appendix A: Results 46

Figure A.23: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 008. The rate was
25kHz. A wheel position of 80 was

used for this run.

Figure A.24: This figure depicts
the ADC spectrum produced from
the improved fit file for run 008.

Figure A.25: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 009. The rate was
25kHz. A wheel position of 100 was

used for this run.

Figure A.26: This figure depicts
the ADC spectrum produced from
the improved fit file for run 009.

Figure A.27: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 014. The rate was
25kHz. A wheel position of 120 was

used for this run.

Figure A.28: This figure depicts
the ADC spectrum produced from
the improved fit file for run 014.

Appendix A: Results 47

Figure A.29: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 017. The rate was
25kHz. A wheel position of 130 was

used for this run.

Figure A.30: This figure depicts
the ADC spectrum produced from
the improved fit file for run 017.

Figure A.31: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 015. The rate was
25kHz. A wheel position of 140 was

used for this run.

Figure A.32: This figure depicts
the ADC spectrum produced from
the improved fit file for run 015.

Figure A.33: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 018. The rate was
25kHz. A wheel position of 150 was

used for this run.

Figure A.34: This figure depicts
the ADC spectrum produced from
the improved fit file for run 018.

Appendix A: Results 48

Figure A.35: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 016. The rate was
25kHz. A wheel position of 160 was

used for this run.

Figure A.36: This figure depicts
the ADC spectrum produced from
the improved fit file for run 016.

Figure A.37: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 019. The wheel po-
sition for the acquisition of this data
was 165. Note that this position is di-
rectly before the Bragg peak position
of 166. A clear discrepancy can be
seen throughout most of the curve, as
demonstrated by the extremely large

χ2 value.

Figure A.38: This figure de-
picts the ADC spectrum produced
from the improved fit file for run
019. Improvements have been
made to the discrepancies, how-
ever they have not been com-

pletely removed.

Appendix A: Results 49

Figure A.39: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 026. The rate was
25kHz. A wheel position of 167 was
used for this run. This position was

directly before the Bragg peak.

Figure A.40: This figure depicts
the ADC spectrum produced from
the improved fit file for run 026.

Figure A.41: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 020. The rate was
25kHz. A wheel position of 170 was
used for this run. The beam dropped

during this run.

Figure A.42: This figure depicts
the ADC spectrum produced from
the improved fit file for run 020.

Figure A.43: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 021. The rate was
25kHz. A wheel position of 170 was
used for this run. This measurement
was taken as a repeat of run 020 due

to the beam dropping.

Figure A.44: This figure depicts
the ADC spectrum produced from
the improved fit file for run 021.

Appendix A: Results 50

Figure A.45: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 023. The rate was
25kHz. A wheel position of 173 was
used for this run. This measurement
was taken as a repeat of run 022 due

to the beam dropping.

Figure A.46: This figure depicts
the ADC spectrum produced from
the improved fit file for run 023.

The rate was 25kHz.

Figure A.47: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 024. The rate was
25kHz. A wheel position of 175 was

used for this run.

Figure A.48: This figure depicts
the ADC spectrum produced from
the improved fit file for run 024.

Figure A.49: This figure depicts the
ADC spectrum produced from the orig-
inal fit file for run 025. The rate was
25kHz. A wheel position of 179 was
used for this run. In this data set there
is no peak. The signal is due to sec-

ondary particles.

Figure A.50: This figure depicts
the ADC spectrum produced from
the improved fit file for run 025.

Written Code

B.1 ADC Spectrum Fit Macro

The code described below is the improved fitting function for the ADC spectrum that

is run via ROOT. The main output of the program is a ROOT file containing the

ADC histogram which in turn contains the data, the initial Gaussian fit, and the final

convolution fit.

1 // Fit for 60MeV proton beam data

2 #include <iostream>

3 #include <string>

4 #include <fstream>

5 #include <sstream>

6 #include <iomanip>

7 #include "TCanvas.h"

8 #include "TF1.h"

9 #include "TFile.h"

10 #include "TGraph.h"

11 #include "TH1D.h"

12 #include "TLine.h"

13 #include "TLegend.h"

14 #include "TMath.h"

15 #include "TTree.h"

16 #include "TStyle.h"

17 #include "TPaveStats.h"

18 #include "TText.h"

19 #include "TLatex.h"

20 #include "TString.h"

21 #include "TImage.h"

22

23 using std::cout;

24 using std::endl;

25 using std::string;

26 using std::stringstream;

27 using std::ifstream;

28

51

Appendix B: Written Code 52

29 static TCanvas* cResultsDisplay = 0;

30

31 //Variable initialisation

32 TH1D* GetData(const string readInFile);

33 Double_t GetPeak(TH1D* adc);

34 TF1* FirstFit(TH1D* adc, Double_t peak, Double_t lowerRange,

Double_t upperRange);↪→

35 Double_t GaussianFit(Double_t *x, Double_t *par);

36 void FinalFit(TH1D* adc, TF1* firstFit, Double_t lowerRange,

Double_t upperRange);↪→

37 Double_t LanGausFunc(Double_t *x, Double_t *par);

38 void Print(TCanvas* canvas, const string readInFile);

39

40 //Main fit code

41 void fit(const string filename, Double_t lower, Double_t upper) {

42

43 gStyle->SetOptFit();

44 gStyle->SetPaintTextFormat("4.3f");

45 cResultsDisplay = new TCanvas("cResultsDisplay","Fit

results",0,0,1000,700);↪→

46

47 // Read in root file to fit

48 TH1D* adc = GetData(filename);

49

50 // Find peak to get initial fit parameters

51 Double_t peak = GetPeak(adc);

52

53 // Run first fit (Gaussian only) to extract fit parameters

54 Double_t range = 100.; // peak +/- range for initial fit, //100

55 Double_t lowerRange = peak - range;

56 Double_t upperRange = peak + range;

57

58 cout << endl;

59 cout << "!!! First fit with arbitary parameters and range !!!"

<< endl;↪→

60

61 TF1* firstFitResult = FirstFit(adc, peak, lowerRange,

upperRange);↪→

62 Double_t sigma = firstFitResult->GetParameter(2);

Appendix B: Written Code 53

63 //FirstFit(adc, peak, lowerRange, upperRange);

64

65 // Define fit range for the second fit (+/- 2sigma)

66 Double_t finalLower = peak - (lower*sigma);

67 Double_t finalUpper = peak + (upper*sigma); //1.4

68

69 cout << endl;

70 cout << "!!! Final fit with defined range !!!" << endl;

71

72 FinalFit(adc, firstFitResult, finalLower, finalUpper);

73

74 Print(cResultsDisplay,filename);

75 }

76

77 // Function to read in data and create file

78

79 TH1D* GetData(const string readInFile) {

80

81 //Specify file to read in

82

83 string filename = readInFile;

84 string rootname;

85 rootname = (filename+".root");

86

87 TFile *file = new TFile(rootname.c_str(),"RECREATE");

88

89 cout << endl << "Taking data from and creating root file with

run: " << readInFile << endl;↪→

90

91 //Int_t x = 20000; // number of bins and maximum bin (binnnig

must be 1 to 1)↪→

92 Int_t x = 40000; //for EJ Block

93 Int_t nBins = x;

94 Int_t maxBin = x;

95

96 TH1D *adc = new TH1D("adc","ADC histogram (Improved Fit File

with range #pm 4.0#sigma)",nBins,0,maxBin);↪→

97

98 // Read in file

Appendix B: Written Code 54

99

100 string inname;

101 inname = (filename+".dat");

102

103 ifstream resultsFile;

104 resultsFile.open(inname.c_str());

105

106 if (resultsFile.is_open()) {

107

108 string data;

109

110 while (getline(resultsFile, data)) {

111

112 stringstream dataReadin;

113 dataReadin << data;

114

115 Int_t bin = 0;

116 Int_t binValue = 0;

117

118 dataReadin >> bin >> binValue;

119 adc->SetBinContent(bin,binValue);

120 }

121 resultsFile.close();

122 }

123

124 adc->SetDirectory(0);

125 adc->GetXaxis()->SetTitle("ADC Counts");

126 adc->GetYaxis()->SetTitle("Number of events");

127 adc->GetYaxis()->SetTitleOffset(1.3);

128 adc->GetYaxis()->CenterTitle();

129 adc->GetXaxis()->SetNdivisions(506);

130

131 Double_t content = 0.;

132 Double_t upperRange = 0.;

133 Double_t maxContent = -1.;

134

135 for (Int_t bin = 0; bin <= adc->GetNbinsX(); bin++) {

136

137 content = adc->GetBinContent(bin);

Appendix B: Written Code 55

138 if (content > maxContent) {

139 maxContent = content;

140 upperRange = bin;

141 }

142 }

143

144 cout << "Peak at " << upperRange << " ADC counts" << endl;

145

146 adc->Write();

147 adc->GetXaxis()->SetRangeUser(upperRange*0.1, upperRange*1.9);

148 adc->Draw();

149

150 // Manipulate stats box

151 cResultsDisplay->Update();

152 TPaveStats* st =

(TPaveStats*)(adc->GetListOfFunctions()->FindObject("stats"));↪→

153 st->SetX1NDC(0.129518);

154 st->SetX2NDC(0.421687);

155 st->SetY1NDC(0.558383);

156 st->SetY2NDC(0.877246);

157

158 adc->GetListOfFunctions()->ls();

159 //adc->Write();

160 file->Close();

161

162 return adc;

163 }

164

165 Double_t GetPeak(TH1D* adc) {

166

167 //Find peak to get parameters for initial fit

168

169 Double_t peak = adc->GetMaximumBin();

170 cout << "Peak at " << peak << " ADC counts" << endl;

171

172 return peak;

173

174 /*

175 Double_t content = 0.;

Appendix B: Written Code 56

176 Double_t peak = 0.;

177 Double_t maxContent = -1.;

178

179 for (Int_t bin = 0; bin <= adc->GetNbinsX(); bin++) {

180

181 content = adc->GetBinContent(bin);

182 if (content > maxContent) {

183 maxContent = content;

184 peak = bin;

185 }

186 }

187

188 cout << "Peak at " << peak << " ADC counts" << endl;

189 return peak;

190 */

191 }

192

193 TF1* FirstFit(TH1D* adc, Double_t peak, Double_t lowerRange, Double_t

upperRange) {↪→

194

195 TF1* initialFit = new TF1("initialFit",

196 GaussianFit,

197 lowerRange,

198 upperRange,

199 3);

200

201 Double_t height = adc->GetBinContent((Int_t)peak);

202

203 //Set initial parameters so root doesn't whine

204

205 initialFit->SetParameter(0, height);

206 initialFit->SetParameter(1, peak);

207 initialFit->SetParameter(2, sqrt(peak));

208 initialFit->SetParLimits(2, 0, 10000);

209

210 adc->Fit("initialFit","RN");

211 Double_t mean = initialFit->GetParameter(1);

212 Double_t sigma = initialFit->GetParameter(2);

213

Appendix B: Written Code 57

214 initialFit->SetLineColor(kBlack);

215 initialFit->Draw("lsame");

216

217 cout << "Fit range: " << lowerRange << " - " << upperRange <<

endl;↪→

218 cout << "Fit parameters: mean of " << mean << " and sigma of "

<< sigma << endl;↪→

219

220 return initialFit;

221

222 }

223

224 Double_t GaussianFit(Double_t *x, Double_t *par){

225

226 Double_t norm = par[0];

227 Double_t mean = par[1];

228 Double_t sigma = par[2];

229 Double_t xx = x[0];

230

231 Double_t arg = (xx - mean)/sigma;

232 Double_t equation = norm * TMath::Exp(-(arg*arg));

233

234 return equation;

235 }

236

237 void FinalFit(TH1D* adc, TF1* firstFit, Double_t lowerRange, Double_t

upperRange) {↪→

238

239 TF1* finalFit = new TF1("finalFit",

240 LanGausFunc,

241 lowerRange,

242 upperRange,

243 7);

244

245 finalFit->SetParNames("lWidth","mean","lNorm","sigma", "rWidth",

"rNorm", "Resolution");↪→

246

247 finalFit->SetParameter(0, 1);

248 finalFit->SetParameter(1, firstFit->GetParameter(1));

Appendix B: Written Code 58

249 finalFit->SetParameter(2, firstFit->GetParameter(0));

250 finalFit->SetParameter(3, firstFit->GetParameter(2));

251 finalFit->SetParLimits(2, 0, 100000000);

252 finalFit->SetParLimits(3, 0, 1000);

253 finalFit->SetParameter(4, 1);

254 finalFit->SetParameter(5, 100);

255 finalFit->SetParameter(6,0);

256 finalFit->SetParLimits(4, 0, 1000);

257 finalFit->SetParLimits(5, 0, 100000000);

258

259 adc->Fit("finalFit","R");

260 finalFit->SetLineColor(kRed);

261 finalFit->Draw("lsame");

262 Double_t mean = finalFit->GetParameter(1);

263 Double_t errorMean = finalFit->GetParError(1);

264

265 Double_t sigma = finalFit->GetParameter(3);

266 Double_t errorSigma = finalFit->GetParError(3);

267 Double_t resolution = 2.35*100.*(sigma/mean);

268 Double_t resolutionError = (

sqrt((errorMean/mean)*(errorMean/mean) +

(errorSigma/sigma)*(errorSigma/sigma)));

↪→

↪→

269 cResultsDisplay->Update();

270 auto ps =

(TPaveStats*)adc->GetListOfFunctions()->FindObject("stats");↪→

271 ps->SetName("mystats");

272 TList *listOfLines = ps->GetListOfLines();

273 TText *tconst = ps->GetLineWith("Resolution");

274 listOfLines->Remove(tconst);

275 TString d;

276 d = "Resolution = ";

277 d += Form("%.4g",resolution);

278 d += " #pm ";

279 d += Form("%.3f",(resolution*resolutionError));

280 d += " % FWHM";

281 TLatex *myt = new TLatex(0,0, d.Data());

282 myt ->SetTextFont(42);

283 myt ->SetTextSize(0.025);

284 myt ->SetTextColor(kBlack);

Appendix B: Written Code 59

285 listOfLines->Add(myt);

286 adc->SetStats(0);

287 cResultsDisplay->Modified();

288

289 cout << "Fit range: " << lowerRange << " - " << upperRange <<

endl;↪→

290 cout << "Fit parameters: mean of " << mean << " and sigma of "

<< sigma << endl;↪→

291

292 // Calculate energy resolution and error

293

294

295 cout << std::setiosflags(ios::fixed) << std::setprecision(3) <<

"Resolution: " << resolution << " +/- " <<

resolution*resolutionError << " % FWHM" << endl;

↪→

↪→

296

297 }

298 Double_t LanGausFunc(Double_t *x, Double_t *par) {

299

300 // Fit parameters:

301 Double_t lWidth = par[0]; // scale parameter of Landau density

(to normalise Landau function)↪→

302 Double_t lMP = par[1]; // most probable location of parameter

of Landau density↪→

303 Double_t norm = par[2]; // integral of total area

304 Double_t sigma = par[3]; // sigma of Gaussian function

305 Double_t rWidth = par[4]; // right handside Landau

306 Double_t norm2 = par[5];

307

308 // Numeric constants:

309 Double_t invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)

310 Double_t mpshift = -0.22278298; // Landau maximum location

311

312 // Control constants:

313 Double_t np = 500.0; // number of convolution steps

314 //Double_t np = 200.0;

315 Double_t sc = 5.0; // convolution extends to +/-sc Gaussian

sigmas↪→

316

Appendix B: Written Code 60

317 // Variables:

318 Double_t xx;

319 Double_t mpc;

320 Double_t fland;

321 Double_t sum = 0.0;

322 Double_t xlow, xupp;

323 Double_t step;

324 Double_t i;

325

326 // MP shift correction:

327

328 mpc = lMP - mpshift * lWidth;

329

330 // Range of convolution integral:

331 xlow = x[0] - sc * sigma;

332 xupp = x[0] + sc * sigma;

333 step = (xupp - xlow)/np; // bin width

334

335 // Convolution integral of Landau and Gaussian by sum:

336

337 for (i = 0; i < np/2; i++) {

338 xx = xlow + (i - .5) * step; // finding the value of the

middle of the bin↪→

339 fland = TMath::Landau(-xx + 2*mpc, mpc, lWidth)/lWidth;

340 sum += (TMath::Gaus(x[0], xx, sigma)) * fland;

341

342 xx = xupp - (i - .5) * step;

343 fland = TMath::Landau(-xx + 2*mpc, mpc, lWidth)/lWidth;

344 sum += (TMath::Gaus(x[0], xx, sigma)) * fland;

345 }

346

347 Double_t result = (norm * step * sum * invsq2pi / sigma);

348 result = result + ((TMath::Landau(xx, mpc, rWidth)/rWidth)

*norm2);↪→

349 return result;

350

351 }

352

353 void Print(TCanvas* canvas, const string readInFile){

Appendix B: Written Code 61

354 TImage *img = TImage::Create();

355 img->FromPad(canvas);

356 img->WriteImage((readInFile+"_improved.png").c_str());

357 }

B.2 Binary Data Conversion Jar

The code described below is used to convert and split a LeCroy binary file into multiple

ASCII data files. The output files contain two columns; the timebase (in nanoseconds),

and the voltage value (in millivolts).

1package lecroy;

2

3import java.io.*;

4import java.nio.file.*;

5import java.text.DecimalFormat;

6import java.nio.ByteBuffer;

7import java.nio.ByteOrder;

8import java.util.*;

9

10public class Reader {

11

12//Instantiate these private variables once, they can be used throughout

all three methods.↪→

13private FileWriter fw;

14private BufferedWriter bw;

15private PrintWriter pw;

16

17//This function is used to convert a specific number of files.

18public void ReadConvertFiles(File[] listing, String output_directory,int

num_files) {↪→

19try{

20long counter = 0;

21//Loop over files whilst i < the number of user specified files to

convert.↪→

22for(int i = 0; i< num_files;i++) {

Appendix B: Written Code 62

23//Retrieves the required file from the listing.

24File wavefile = listing[i];

25BufferedReader reader = new BufferedReader(new

FileReader(wavefile.toString()));↪→

26//Instantiate string to read data line by line.

27String line = null;

28InputStream byteread = null;

29byteread = new FileInputStream(wavefile);

30int WAVEDESC = 0;

31//Read the header of the binary file.

32while(WAVEDESC <= 0) {

33line = reader.readLine();

34CharSequence desc = "WAVEDESC";

35WAVEDESC = line.indexOf((String)desc);

36}

37reader.close();

38//Reads all the data from the binary file into memory.

39byte[] bytedata = new byte[(int)wavefile.length()];

40byteread.read(bytedata);

41byteread.close();

42ByteBuffer read = ByteBuffer.wrap(bytedata);

43int aCOMM_ORDER = WAVEDESC+ 34; short COMM_ORDER

= read.get(aCOMM_ORDER);↪→

44if(COMM_ORDER == 0) {

45read = ByteBuffer.wrap(bytedata);

46read.order(ByteOrder.BIG_ENDIAN);

47}

48else {

49read = ByteBuffer.wrap(bytedata);

50read.order(ByteOrder.LITTLE_ENDIAN);

51}

52//Instantiate required variables.

53// String[] tmp = {"channel 1","channel 2", "channel 3",

"channel 4", "unknown"};↪→

54// String[] tmp2 = {"DC_50_Ohms", "ground ","DC 1MOhm

","ground ","AC 1MOhm "};↪→

55// String[] tmp3 = {"off","on "};

Appendix B: Written Code 63

56// String[] tmp4 = {"single_sweep ", "interleaved

", "histogram ","graph ","filter_coefficient",

"complex ","extrema ","sequence_obsolete

","centered_RIS ","peak_detect "};

↪→

↪→

↪→

57// String[] tmp5 = {"no_processing","fir_filter ","interpolated

","sparsed ","autoscaled ","no_result ","rolling

","cumulative "};

↪→

↪→

58// int aTEMPLATE_NAME = WAVEDESC+ 16;

59int aCOMM_TYPE = WAVEDESC+ 32;short COMM_TYPE =

read.getShort(aCOMM_TYPE);↪→

60int aWAVE_DESCRIPTOR = WAVEDESC+ 36;long WAVE_DESCRIPTOR =

read.getLong(aWAVE_DESCRIPTOR); // length of the descriptor

block short

↪→

↪→

61int aUSER_TEXT = WAVEDESC+ 40;long USER_TEXT =

read.getLong(aUSER_TEXT); // length of the usertext block↪→

62int aTRIGTIME_ARRAY = WAVEDESC+ 48;long TRIGTIME_ARRAY =

read.getLong(aTRIGTIME_ARRAY);↪→

63int aWAVE_ARRAY_1 = WAVEDESC+ 60;long WAVE_ARRAY_1 =

read.getLong(aWAVE_ARRAY_1); // length (in Byte) of the sample array↪→

64//int aINSTRUMENT_NAME = WAVEDESC+ 76;String INSTRUMENT_NAME =

ReadString(bytedata,aINSTRUMENT_NAME);↪→

65//int aINSTRUMENT_NUMBER = WAVEDESC+ 92;long INSTRUMENT_NUMBER =

read.getLong(aINSTRUMENT_NUMBER);↪→

66//int aTRACE_LABEL = WAVEDESC+ 96;

67// int aWAVE_ARRAY_COUNT = WAVEDESC+ 116;long

WAVE_ARRAY_COUNT = read.getLong(aWAVE_ARRAY_COUNT);↪→

68int aVERTICAL_GAIN = WAVEDESC+ 156;float VERTICAL_GAIN =

read.getFloat(aVERTICAL_GAIN);↪→

69int aVERTICAL_OFFSET = WAVEDESC+ 160;float VERTICAL_OFFSET =

read.getFloat(aVERTICAL_OFFSET);↪→

70//int aNOMINAL_BITS = WAVEDESC+ 172;short NOMINAL_BITS =

read.getShort(aNOMINAL_BITS);↪→

71int aHORIZ_INTERVAL = WAVEDESC+ 176;float HORIZ_INTERVAL =

read.getFloat(aHORIZ_INTERVAL);↪→

72int aHORIZ_OFFSET = WAVEDESC+ 180;double HORIZ_OFFSET =

read.getDouble(aHORIZ_OFFSET);↪→

73//int aVERTUNIT = WAVEDESC+ 196;

74//int aHORUNIT = WAVEDESC+ 244;

Appendix B: Written Code 64

75//int aTRIGGER_TIME = WAVEDESC+ 296;String TRIGGER_TIME =

ReadTimestamp(read,aTRIGGER_TIME);↪→

76//int aRECORD_TYPE = WAVEDESC+ 316;String RECORD_TYPE =

tmp4[read.getShort(aRECORD_TYPE)];↪→

77//int aPROCESSING_DONE = WAVEDESC+ 318;String PROCESSING_DONE =

tmp5[read.getShort(aPROCESSING_DONE)];↪→

78//int aTIMEBASE = WAVEDESC+ 324;String TIMEBASE =

Float_To_Eng((float)ReadTimebase(read,

aTIMEBASE)).toString()+"s/Div";

↪→

↪→

79//int aVERT_COUPLING = WAVEDESC+ 326;String VERT_COUPLING

= tmp[read.getShort(aVERT_COUPLING)];↪→

80//int aPROBE_ATT = WAVEDESC+ 328;float PROBE_ATT

= read.getFloat(aPROBE_ATT);↪→

81//int aFIXED_VERT_GAIN = WAVEDESC+ 332;float FIXED_VERT_GAIN =

Float.parseFloat(String.valueOf(ReadFixed_vert_gain(read,aFIXED_VERT_GAIN)));↪→

82//int aBANDWIDTH_LIMIT = WAVEDESC+ 334;String BANDWIDTH_LIMIT =

tmp2[read.getShort(aBANDWIDTH_LIMIT)];↪→

83//int aVERTICAL_VERNIER = WAVEDESC+ 336;

84//int aACQ_VERT_OFFSET = WAVEDESC+ 340;

85//int aWAVE_SOURCE = WAVEDESC+ 344;String WAVE_SOURCE =

tmp3[read.getShort(aWAVE_SOURCE)];↪→

86//String Gain_with_Probe =

Float_To_Eng(FIXED_VERT_GAIN*PROBE_ATT)+"V/Div";↪→

87//String SampleRate = Float_To_Eng(1/HORIZ_INTERVAL)+"S/Sec";

88

89//Set the reader position to the start of the data.

90read.position((int)(WAVEDESC+WAVE_DESCRIPTOR+USER_TEXT+TRIGTIME_ARRAY));

91ArrayList<Float> y_values = new ArrayList<Float>();

92// ArrayList<Float> x_values = new ArrayList<Float>();

93

94//Read data into arrays.

95if(COMM_TYPE == 0) {

96for(int j=0;j<WAVE_ARRAY_1;j++) {

97float initial = 0;

98if(j == 0) {

99initial = (float)(j * HORIZ_INTERVAL - HORIZ_OFFSET);

100y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET)*1000);

101// x_values.add((float)(0.0));

102

Appendix B: Written Code 65

103}

104else{

105y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET)*1000);

106//x_values.add((float)(((j * HORIZ_INTERVAL) - HORIZ_OFFSET +

initial)*Math.pow(10, 9)));↪→

107}

108}

109}

110//Output data.

111for(long k = 0; k<(WAVE_ARRAY_1/1000);k++) {

112String file2 = output_directory+"WAVEFILE"+counter+".dat";

113File outputFile = new File(file2);

114fw = new FileWriter(outputFile);

115bw = new BufferedWriter(fw);

116pw = new PrintWriter(bw);

117counter++;

118for(int l = 0; l < 1000; l++){

119pw.println((((float)(l*HORIZ_INTERVAL)*Math.pow(10, 9))+"

"+-1*y_values.get(l)));↪→

120}

121pw.close();

122}

123}

124}

125catch (Exception e) {

126e.printStackTrace();

127}

128

129}

130

131//Converts all files in the specified directory.

132public void ReadConvertAllFilesSplit(File[] listing, String

output_directory) {↪→

133try {

134long counter = 0;

135for(int i = 0; i< listing.length;i++) {

136File wavefile = listing[i];

137BufferedReader reader = new BufferedReader(new

FileReader(wavefile.toString()));↪→

Appendix B: Written Code 66

138String line = null;

139InputStream byteread = null;

140byteread = new FileInputStream(wavefile);

141int WAVEDESC = 0;

142while(WAVEDESC <= 0) {

143line = reader.readLine();

144CharSequence desc = "WAVEDESC";

145WAVEDESC = line.indexOf((String)desc);

146}

147reader.close();

148byte[] bytedata = new byte[(int)wavefile.length()];

149byteread.read(bytedata);

150byteread.close();

151ByteBuffer read = ByteBuffer.wrap(bytedata);

152int aCOMM_ORDER = WAVEDESC+ 34; short COMM_ORDER

= read.get(aCOMM_ORDER);↪→

153if(COMM_ORDER == 0) {

154read = ByteBuffer.wrap(bytedata);

155read.order(ByteOrder.BIG_ENDIAN);

156}

157else {

158read = ByteBuffer.wrap(bytedata);

159read.order(ByteOrder.LITTLE_ENDIAN);

160}

161

162// String[] tmp = {"channel 1","channel 2", "channel 3",

"channel 4", "unknown"};↪→

163// String[] tmp2 = {"DC_50_Ohms", "ground ","DC 1MOhm

","ground ","AC 1MOhm "};↪→

164// String[] tmp3 = {"off","on "};

165// String[] tmp4 = {"single_sweep ", "interleaved

", "histogram ","graph ","filter_coefficient",

"complex ","extrema ","sequence_obsolete

","centered_RIS ","peak_detect "};

↪→

↪→

↪→

166// String[] tmp5 = {"no_processing","fir_filter ","interpolated

","sparsed ","autoscaled ","no_result ","rolling

","cumulative "};

↪→

↪→

167// int aTEMPLATE_NAME = WAVEDESC+ 16;

Appendix B: Written Code 67

168int aCOMM_TYPE = WAVEDESC+ 32;short COMM_TYPE =

read.getShort(aCOMM_TYPE);↪→

169int aWAVE_DESCRIPTOR = WAVEDESC+ 36;long WAVE_DESCRIPTOR =

read.getLong(aWAVE_DESCRIPTOR); // length of the descriptor

block short

↪→

↪→

170int aUSER_TEXT = WAVEDESC+ 40;long USER_TEXT =

read.getLong(aUSER_TEXT); // length of the usertext block↪→

171int aTRIGTIME_ARRAY = WAVEDESC+ 48;long TRIGTIME_ARRAY =

read.getLong(aTRIGTIME_ARRAY);↪→

172int aWAVE_ARRAY_1 = WAVEDESC+ 60;long WAVE_ARRAY_1 =

read.getLong(aWAVE_ARRAY_1); // length (in Byte) of the sample array↪→

173// int aINSTRUMENT_NAME = WAVEDESC+ 76;String

INSTRUMENT_NAME = ReadString(bytedata,aINSTRUMENT_NAME);↪→

174// int aINSTRUMENT_NUMBER = WAVEDESC+ 92;long INSTRUMENT_NUMBER

= read.getLong(aINSTRUMENT_NUMBER);↪→

175// int aTRACE_LABEL = WAVEDESC+ 96;

176// int aWAVE_ARRAY_COUNT = WAVEDESC+ 116;long

WAVE_ARRAY_COUNT = read.getLong(aWAVE_ARRAY_COUNT);↪→

177int aVERTICAL_GAIN = WAVEDESC+ 156;float VERTICAL_GAIN =

read.getFloat(aVERTICAL_GAIN);↪→

178int aVERTICAL_OFFSET = WAVEDESC+ 160;float VERTICAL_OFFSET =

read.getFloat(aVERTICAL_OFFSET);↪→

179// int aNOMINAL_BITS = WAVEDESC+ 172;short

NOMINAL_BITS = read.getShort(aNOMINAL_BITS);↪→

180int aHORIZ_INTERVAL = WAVEDESC+ 176;float HORIZ_INTERVAL =

read.getFloat(aHORIZ_INTERVAL);↪→

181int aHORIZ_OFFSET = WAVEDESC+ 180;double HORIZ_OFFSET =

read.getDouble(aHORIZ_OFFSET);↪→

182// int aVERTUNIT = WAVEDESC+ 196;

183// int aHORUNIT = WAVEDESC+ 244;

184// int aTRIGGER_TIME = WAVEDESC+ 296;String

TRIGGER_TIME = ReadTimestamp(read,aTRIGGER_TIME);↪→

185// int aRECORD_TYPE = WAVEDESC+ 316;String

RECORD_TYPE = tmp4[read.getShort(aRECORD_TYPE)];↪→

186// int aPROCESSING_DONE = WAVEDESC+ 318;String

PROCESSING_DONE = tmp5[read.getShort(aPROCESSING_DONE)];↪→

187// int aTIMEBASE = WAVEDESC+ 324;String

TIMEBASE = Float_To_Eng((float)ReadTimebase(read,

aTIMEBASE)).toString()+"s/Div";

↪→

↪→

Appendix B: Written Code 68

188// int aVERT_COUPLING = WAVEDESC+ 326;String

VERT_COUPLING = tmp[read.getShort(aVERT_COUPLING)];↪→

189int aPROBE_ATT = WAVEDESC+ 328;float PROBE_ATT =

read.getFloat(aPROBE_ATT);↪→

190int aFIXED_VERT_GAIN = WAVEDESC+ 332;float FIXED_VERT_GAIN =

Float.parseFloat(String.valueOf(ReadFixed_vert_gain(read,aFIXED_VERT_GAIN)));↪→

191// int aBANDWIDTH_LIMIT = WAVEDESC+ 334;String

BANDWIDTH_LIMIT = tmp2[read.getShort(aBANDWIDTH_LIMIT)];↪→

192// int aVERTICAL_VERNIER = WAVEDESC+ 336;

193// int aACQ_VERT_OFFSET = WAVEDESC+ 340;

194// int aWAVE_SOURCE = WAVEDESC+ 344;String

WAVE_SOURCE = tmp3[read.getShort(aWAVE_SOURCE)];↪→

195// String Gain_with_Probe =

Float_To_Eng(FIXED_VERT_GAIN*PROBE_ATT)+"V/Div";↪→

196// String SampleRate = Float_To_Eng(1/HORIZ_INTERVAL)+"S/Sec";

197read.position((int)(WAVEDESC+WAVE_DESCRIPTOR+USER_TEXT+TRIGTIME_ARRAY));

198ArrayList<Float> y_values = new ArrayList<Float>();

199// ArrayList<Float> x_values = new ArrayList<Float>();

200if(COMM_TYPE == 0) {

201for(int j=0;j<WAVE_ARRAY_1;j++) {

202float initial = 0;

203if(j == 0) {

204initial = (float)(j * HORIZ_INTERVAL - HORIZ_OFFSET);

205y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET)*1000);

206// x_values.add((float)(0.0));

207

208}

209else{

210y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET)*1000);

211//x_values.add((float)(((j * HORIZ_INTERVAL) - HORIZ_OFFSET +

initial)*Math.pow(10, 9)));↪→

212}

213}

214}

215else{

216for(int j=0;j<WAVE_ARRAY_1;j++) {

217float initial = 0;

218if(j == 0) {

219initial = (float)(j * HORIZ_INTERVAL - HORIZ_OFFSET);

Appendix B: Written Code 69

220y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET)*1000);

221//x_values.add((float)(0.0));

222

223}

224else{

225y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET)*1000);

226//x_values.add((float)(((j * HORIZ_INTERVAL) - HORIZ_OFFSET +

initial)*Math.pow(10, 9)));↪→

227}

228}

229}

230// int m = 0;

231// String file2 =

output_directory+"WAVEFILE"+counter+".txt";↪→

232// File outputFile = new File(file2);

233// fw = new FileWriter(outputFile);

234// bw = new BufferedWriter(fw);

235// pw = new PrintWriter(bw);

236// while(m < y_values.size()) {

237// float y_val = y_values.get(m);

238// DecimalFormat decimalFormat =

new DecimalFormat("#.##");↪→

239// pw.println(Float.valueOf(decimalFormat.format(y_val)));

m++;↪→

240// }

241// pw.close();

242int m = 0;

243while(m < y_values.size()){

244for(long k = 0; k<(WAVE_ARRAY_1/1000);k++) {

245String file2 = output_directory+"WAVEFILE"+counter+".dat";

246File outputFile = new File(file2);

247fw = new FileWriter(outputFile);

248bw = new BufferedWriter(fw);

249pw = new PrintWriter(bw);

250counter++;

251for(int l = 0; l < 1000; l++){

252float y_val = y_values.get(m); m++;

253float x_val = (float)((l*HORIZ_INTERVAL)*Math.pow(10, 9));

254//Format the values to remove unecessary information.

Appendix B: Written Code 70

255DecimalFormat decimalFormat = new DecimalFormat("#.##");

256DecimalFormat decimalFormat2 = new DecimalFormat("#.####");

257pw.println(Float.valueOf(decimalFormat.format(x_val))+"

"+-1.0*Float.valueOf(decimalFormat2.format(y_val)));↪→

258}

259pw.close();

260}

261}

262

263}

264}

265catch(Exception e) {

266e.printStackTrace();

267}

268

269}

270

271//This method prints all the data into one file. Provided for

functionality but not necessary.↪→

272public void ReadConvertAllFiles(File[] listing, String

output_directory,int num_files) {↪→

273ArrayList<Float> y_values = new ArrayList<Float>();

274ArrayList<Float> x_values = new ArrayList<Float>();

275String file2 = output_directory+"WAVEFILE_ALL.dat";

276File outputFile = new File(file2);

277try{

278fw = new FileWriter(outputFile);

279bw = new BufferedWriter(fw);

280pw = new PrintWriter(bw);

281for(int i = 0; i< num_files;i++) {

282File wavefile = listing[i];

283BufferedReader reader = new BufferedReader(new

FileReader(wavefile.toString()));↪→

284String line = null;

285InputStream byteread = null;

286byteread = new FileInputStream(wavefile);

287int WAVEDESC = 0;

288while(WAVEDESC <= 0) {

289line = reader.readLine();

Appendix B: Written Code 71

290CharSequence desc = "WAVEDESC";

291WAVEDESC = line.indexOf((String)desc);

292}

293reader.close();

294byte[] bytedata = new byte[(int)wavefile.length()];

295byteread.read(bytedata);

296byteread.close();

297ByteBuffer read = ByteBuffer.wrap(bytedata);

298int aCOMM_ORDER = WAVEDESC+ 34; short COMM_ORDER

= read.get(aCOMM_ORDER);↪→

299if(COMM_ORDER == 0) {

300read = ByteBuffer.wrap(bytedata);

301read.order(ByteOrder.BIG_ENDIAN);

302}

303else {

304read = ByteBuffer.wrap(bytedata);

305read.order(ByteOrder.LITTLE_ENDIAN);

306}

307

308String[] tmp = {"channel 1","channel 2", "channel 3", "channel 4",

"unknown"};↪→

309String[] tmp2 = {"DC_50_Ohms", "ground ","DC 1MOhm ","ground

","AC 1MOhm "};↪→

310String[] tmp3 = {"off","on "};

311String[] tmp4 = {"single_sweep ", "interleaved ",

"histogram ","graph ","filter_coefficient",

"complex ","extrema ","sequence_obsolete

","centered_RIS ","peak_detect "};

↪→

↪→

↪→

312String[] tmp5 = {"no_processing","fir_filter ","interpolated

","sparsed ","autoscaled ","no_result ","rolling

","cumulative "};

↪→

↪→

313// int aTEMPLATE_NAME = WAVEDESC+ 16;

314int aCOMM_TYPE = WAVEDESC+ 32;short COMM_TYPE =

read.getShort(aCOMM_TYPE);↪→

315int aWAVE_DESCRIPTOR = WAVEDESC+ 36;long WAVE_DESCRIPTOR =

read.getLong(aWAVE_DESCRIPTOR); // length of the descriptor

block short

↪→

↪→

316int aUSER_TEXT = WAVEDESC+ 40;long USER_TEXT =

read.getLong(aUSER_TEXT); // length of the usertext block↪→

Appendix B: Written Code 72

317int aTRIGTIME_ARRAY = WAVEDESC+ 48;long TRIGTIME_ARRAY =

read.getLong(aTRIGTIME_ARRAY);↪→

318int aWAVE_ARRAY_1 = WAVEDESC+ 60;long WAVE_ARRAY_1 =

read.getLong(aWAVE_ARRAY_1); // length (in Byte) of the sample array↪→

319// int aINSTRUMENT_NAME = WAVEDESC+ 76;String

INSTRUMENT_NAME = ReadString(bytedata,aINSTRUMENT_NAME);↪→

320// int aINSTRUMENT_NUMBER = WAVEDESC+ 92;long INSTRUMENT_NUMBER

= read.getLong(aINSTRUMENT_NUMBER);↪→

321// int aTRACE_LABEL = WAVEDESC+ 96;

322// int aWAVE_ARRAY_COUNT = WAVEDESC+ 116;long

WAVE_ARRAY_COUNT = read.getLong(aWAVE_ARRAY_COUNT);↪→

323int aVERTICAL_GAIN = WAVEDESC+ 156;float VERTICAL_GAIN =

read.getFloat(aVERTICAL_GAIN);↪→

324int aVERTICAL_OFFSET = WAVEDESC+ 160;float VERTICAL_OFFSET =

read.getFloat(aVERTICAL_OFFSET);↪→

325// int aNOMINAL_BITS = WAVEDESC+ 172;short

NOMINAL_BITS = read.getShort(aNOMINAL_BITS);↪→

326int aHORIZ_INTERVAL = WAVEDESC+ 176;float HORIZ_INTERVAL =

read.getFloat(aHORIZ_INTERVAL);↪→

327int aHORIZ_OFFSET = WAVEDESC+ 180;double HORIZ_OFFSET =

read.getDouble(aHORIZ_OFFSET);↪→

328// int aVERTUNIT = WAVEDESC+ 196;

329// int aHORUNIT = WAVEDESC+ 244;

330// int aTRIGGER_TIME = WAVEDESC+ 296;String

TRIGGER_TIME = ReadTimestamp(read,aTRIGGER_TIME);↪→

331// int aRECORD_TYPE = WAVEDESC+ 316;String

RECORD_TYPE = tmp4[read.getShort(aRECORD_TYPE)];↪→

332// int aPROCESSING_DONE = WAVEDESC+ 318;String

PROCESSING_DONE = tmp5[read.getShort(aPROCESSING_DONE)];↪→

333// int aTIMEBASE = WAVEDESC+ 324;String

TIMEBASE = Float_To_Eng((float)ReadTimebase(read,

aTIMEBASE)).toString()+"s/Div";

↪→

↪→

334// int aVERT_COUPLING = WAVEDESC+ 326;String

VERT_COUPLING = tmp[read.getShort(aVERT_COUPLING)];↪→

335int aPROBE_ATT = WAVEDESC+ 328;float PROBE_ATT =

read.getFloat(aPROBE_ATT);↪→

336int aFIXED_VERT_GAIN = WAVEDESC+ 332;float FIXED_VERT_GAIN =

Float.parseFloat(String.valueOf(ReadFixed_vert_gain(read,aFIXED_VERT_GAIN)));↪→

Appendix B: Written Code 73

337// int aBANDWIDTH_LIMIT = WAVEDESC+ 334;String

BANDWIDTH_LIMIT = tmp2[read.getShort(aBANDWIDTH_LIMIT)];↪→

338// int aVERTICAL_VERNIER = WAVEDESC+ 336;

339// int aACQ_VERT_OFFSET = WAVEDESC+ 340;

340// int aWAVE_SOURCE = WAVEDESC+ 344;String

WAVE_SOURCE = tmp3[read.getShort(aWAVE_SOURCE)];↪→

341// String Gain_with_Probe =

Float_To_Eng(FIXED_VERT_GAIN*PROBE_ATT)+"V/Div";↪→

342// String SampleRate = Float_To_Eng(1/HORIZ_INTERVAL)+"S/Sec";

343read.position((int)(WAVEDESC+WAVE_DESCRIPTOR+USER_TEXT+TRIGTIME_ARRAY));

344if(COMM_TYPE == 0) {

345for(int j=0;j<WAVE_ARRAY_1;j++) {

346y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET));

347x_values.add((float)(j * HORIZ_INTERVAL + HORIZ_OFFSET));

348}

349}

350else{

351for(int j=0;j<WAVE_ARRAY_1;j++) {

352y_values.add((VERTICAL_GAIN*(int)read.get() - VERTICAL_OFFSET));

353x_values.add((float)(j * HORIZ_INTERVAL + HORIZ_OFFSET));

354}

355}

356

357}

358for(int k = 0; k<y_values.size();k++) {

359pw.println((-1.0*y_values.get(k)+" "+x_values.get(k)));

360}

361pw.close();

362

363}

364catch (Exception e) {

365

366}

367

368}

369

370//Method to produce a file listing of a directory.

371public File[] getFiles(Path filesPath) {

372File[] listing = null;

Appendix B: Written Code 74

373try {

374File dir = new File(filesPath.toString());

375listing = dir.listFiles();

376}

377catch(Exception e) {e.printStackTrace();}

378return listing;

379}

380

381//Converts binary data to a string.

382public String ReadString(byte[] data, int addr) {

383StringBuilder sb = new StringBuilder();

384int i = addr;int j = i +16;

385while(i<j) {

386byte character = data[i];

387char c = (char) (character & 0xFF);

388sb.append(c);

389i++;

390}

391return sb.toString();

392}

393

394//Converts binary data to a timestamp.

395public String ReadTimestamp(ByteBuffer b, int addr) {

396String stamp; b.position(addr);

397double seconds = b.getDouble(); byte minutes = b.get();

398byte hours = b.get();byte days = b.get();

399byte months = b.get();short year = b.getShort();

400stamp = days+"."+months+"."+year+ ",

"+hours+":"+minutes+":"+(int)seconds;↪→

401return stamp;

402}

403

404//Reads the timebase of the data.

405public double ReadTimebase(ByteBuffer b, int addr) {

406short e = b.getShort(addr);

407int[] tmp = {1,2,5};

408int mant = tmp[e%3];

409int ex = Math.floorDiv(e, 3) -12 ;

410double val = mant*Math.pow(10, ex);

Appendix B: Written Code 75

411return val;

412}

413

414//Reads the vertical gain of the data.

415public double ReadFixed_vert_gain(ByteBuffer b, int addr) {

416double vert_gain; short e = b.getShort(addr);

417int[] tmp = {1,2,5}; int mant = tmp[e%3];

418int ex = Math.floorDiv(e, 3) -6; vert_gain = mant* Math.pow(10, ex);

419return vert_gain;

420}

421

422//Function to convert a float to its unit. Provided for functionality

but currently unused.↪→

423public String Float_To_Eng(float i) {

424float ex = (float) Math.floor(Math.log10(i));

425float exeng = ex - (Math.floorMod((int)ex, 3));

426if(exeng<-18) { exeng = -18;}

427if(exeng>18) {exeng = 18;}

428float mant =(float) (i/(Math.pow(10, exeng)));

429String[] prefix = {"a","f","p","n","u","m","","k","M","G","P","E"};

430String result = mant+prefix[(int)(exeng+18)/3];

431return result;

432}

433

434//Determines if a parsed string is an integer.

435public boolean isStringInt(String s)

436{

437try

438{

439Integer.parseInt(s);

440return true;

441} catch (NumberFormatException ex)

442{

443return false;

444}

445}

446

447//This main function should not be changed to retain command line

functionality.↪→

Appendix B: Written Code 76

448public static void main(String[] args) {

449Reader r = new Reader();

450//Get current path incase it is not provided by user.

451Path directoryPath; Path currentPath =

Paths.get(".").toAbsolutePath().normalize();↪→

452String outputDirectory;

453String split;

454int numFiles;

455int numArgs = args.length;

456//Default response of program if no arguments are provided.

457if(numArgs == 0) {

458directoryPath = currentPath;

459outputDirectory = currentPath.toString();

460numFiles = r.getFiles(directoryPath).length;

461r.ReadConvertAllFiles(r.getFiles(directoryPath),outputDirectory,numFiles);

462}

463if(numArgs == 1) {

464if(r.isStringInt(args[0].toString()) == true) {

465numFiles = Integer.parseInt(args[0].toString());

466directoryPath = currentPath;

467outputDirectory = currentPath.toString();

468r.ReadConvertFiles(r.getFiles(directoryPath),outputDirectory, numFiles);

469}

470else{

471directoryPath = Paths.get(args[0].toString());

472outputDirectory = args[0].toString();

473numFiles = r.getFiles(directoryPath).length;

474r.ReadConvertAllFiles(r.getFiles(directoryPath), outputDirectory,

numFiles);↪→

475}

476}

477if(numArgs == 2) {

478if(r.isStringInt(args[1].toString()) == true) {

479numFiles = Integer.parseInt(args[1].toString());

480directoryPath = Paths.get(args[0].toString());

481outputDirectory = args[0].toString();

482r.ReadConvertFiles(r.getFiles(directoryPath),outputDirectory, numFiles);

483}

484else{

Appendix B: Written Code 77

485directoryPath = Paths.get(args[0].toString());

486outputDirectory = args[1].toString();

487numFiles = r.getFiles(directoryPath).length;

488r.ReadConvertAllFiles(r.getFiles(directoryPath),outputDirectory,numFiles);

489}

490}

491if(numArgs == 3) {

492directoryPath = Paths.get(args[0].toString());

493outputDirectory = args[1].toString();

494numFiles = Integer.parseInt(args[2].toString());

495r.ReadConvertFiles(r.getFiles(directoryPath),outputDirectory, numFiles);

496}

497if(numArgs == 4) {

498directoryPath = Paths.get(args[0].toString());

499outputDirectory = args[1].toString();

500numFiles = Integer.parseInt(args[2].toString());

501split = args[3].toString();

502if(split.equalsIgnoreCase("split")) {

503r.ReadConvertAllFilesSplit(r.getFiles(directoryPath), outputDirectory);

504}

505else{

506r.ReadConvertFiles(r.getFiles(directoryPath), outputDirectory,

numFiles);↪→

507}

508}

509}

510

511}

B.3 Waveform Analysis Macro

The code described below is the ROOT macro that was used to read in multiple wave-

form data files from a directory, analyse the files for multiple peaks, and also to integrate

the pulses in order to produce an ADC spectrum (although this functionality is not com-

plete). The main output of this file is a ROOT file that contains two TTree structures.

One of the TTrees contains the ”good” pulses and the ADC spectrum that is reproduced.

The other TTree contains the ”bad” pulses that are kept for reference.

Appendix B: Written Code 78

1 #include <iostream>

2 #include <iomanip>

3 #include <fstream>

4 #include <string>

5 #include <cstring>

6 #include <vector>

7 #include <map>

8 #include <algorithm>

9 #include "TLine.h"

10 #include <sstream>

11 #include <cstdlib>

12 #include <math.h>

13 #include <stdio.h>

14 #include <stdlib.h>

15 #include <sys/types.h>

16 #include "TSystem.h"

17 #include "TSpectrum.h"

18 #include "TCanvas.h"

19 #include "TF1.h"

20 #include "TFile.h"

21 #include "TGraph.h"

22 #include "TH1D.h"

23 #include "TLegend.h"

24 #include "TMath.h"

25 #include "TTree.h"

26 #include "TStyle.h"

27 #include "TPaveStats.h"

28

29 using namespace std;

30

31 Double_t GetPeak(TH1D* wave);

32 void fitattempt(TH1D* wave, Double_t peak, Double_t lowerRange, Double_t

upperRange);↪→

33 Double_t gausPart(Double_t *x, Double_t *par);

34

35

36 void waveform(string s) {

37 ifstream resultsFile;

Appendix B: Written Code 79

38 ofstream currentOutFile;

39

40 //Define the Tree structures that will contain the good and bad

waveforms↪→

41 TTree* waveform_tree = new TTree("waveform_tree", "Tree

containing waveform data");↪→

42 TTree* bad_waves = new TTree("bad_waves", "Tree containing bad

waveforms");↪→

43 //Define the output file

44 TFile* output_file = new TFile("testtree.root", "RECREATE");

45

46 //Open the directory containing the individual waveform files

47 void *dirp = gSystem->OpenDirectory (s.c_str());

48 //Variable that will hold the file name

49 const char* afile;

50 //Skip the first two entries on Linux

51 gSystem->GetDirEntry(dirp);

52 gSystem->GetDirEntry(dirp);

53 //Keeps count of the number of bad waves

54 Int_t badwaves = 0;

55 //Vectors to store the integral number, adc number, and number

of counts for each waveform↪→

56 vector<Int_t> integrals;

57 vector<Int_t> events;

58 vector<Int_t> counts;

59 //Loop over all files in specified directory

60 while ((afile = gSystem->GetDirEntry(dirp))) {

61 //Instantiate histograms for either a good or bad pulse

62 TH1D *wave = new TH1D("Good Wave","Waveform

Pulse",1000,0,1000);↪→

63 TH1D *badwave = new TH1D("Bad Wave","Waveform

Pulse",1000,0,1000);↪→

64 //Set waveform file name

65 string str(afile);

66 string file_name = s+(str);

67 //Open file containing data

68 resultsFile.open(file_name.c_str());

69 //This string will hold the data

70 string data;

Appendix B: Written Code 80

71 //Keep track of number of ppoints

72 int pointsCounter = 0;

73 int counter = 0;

74 //Read in data

75 if(resultsFile.is_open()){

76 Int_t bin = 0;

77 Int_t maxValue = 0;

78 while(getline(resultsFile,data)){

79 stringstream dataReadin;

80 dataReadin << data;

81 ++pointsCounter;

82 Int_t time_val = 0;

83 Int_t volt_val = 0;

84 dataReadin >> time_val >> volt_val;

85 //Find maximum voltage value

86 if(volt_val > maxValue) {maxValue =

volt_val;}↪→

87 }

88 const unsigned int nLines = pointsCounter;

89 resultsFile.clear();

90 resultsFile.seekg(0, ios::beg);

91 Int_t timebase_value[pointsCounter],

voltage_value[pointsCounter];↪→

92 //Fill the histogram with data

93 while (getline(resultsFile, data)) {

94

95 stringstream dataReadin;

96 dataReadin << data;

97

98 Int_t timeStamp = 0;

99 Int_t voltage = 0;

100

101

102 dataReadin >> timeStamp >> voltage;

103

104 // Fill arrays and tree

105 timebase_value[counter] = timeStamp;

106 voltage_value[counter] = voltage;

Appendix B: Written Code 81

107 //This flips the sign of the voltage to

make the pulse positive↪→

108 wave->SetBinContent(timeStamp,(-1. *

voltage));↪→

109 counter++;

110 }

111

112 //TGraph *wave1 = new

TGraph(counter,timebase_value,

voltage_value);

↪→

↪→

113

114 //Instatiate searching method

115 TSpectrum *s = new TSpectrum();

116 //Find number of peaks in current waveform

117 Int_t nfound =

s->Search(wave,1.0,"nobackground",0.40);↪→

118 //Find largest peak

119 Double_t peak = GetPeak(wave);

120

121 //If number of peaks is greater than one it's a

bad waveform↪→

122 if(nfound >1) {

123 //TCanvas* canvas = new

TCanvas(afile,afile,160,160,900,675);↪→

124 badwaves++;

125 badwave = wave;

126 badwave->SetDirectory(0);

127 badwave->GetXaxis()->SetTitle("Time

(ns)");↪→

128 badwave->GetYaxis()->SetTitle("Voltage

(mV)");↪→

129 badwave->GetYaxis()->SetTitleOffset(1.3);

130 badwave->GetYaxis()->CenterTitle();

131 //wave->GetXaxis()->SetNdivisions(506);

132 badwave->Draw();

133 //canvas->Print(("plots/"+str+".png").c_str());

134 badwave->Write();

135 resultsFile.close();

136 output_file->cd();

Appendix B: Written Code 82

137 bad_waves->Write();

138 }

139 //Else good waveform

140 else{

141 wave->SetDirectory(0);

142 wave->GetXaxis()->SetTitle("Time (ns)");

143 wave->GetYaxis()->SetTitle("Voltage

(mV)");↪→

144 wave->GetYaxis()->SetTitleOffset(1.3);

145 wave->GetYaxis()->CenterTitle();

146 //wave->GetXaxis()->SetNdivisions(506);

147 //wave->Write();

148 wave->Draw();

149 //fitattempt(wave, peak, 0, 455);

150 //Integrate the waveform, 80-250 ns is

the gate over which integration

takes place

↪→

↪→

151 Double_t integral =

wave->Integral(80.0,250.0,"width");↪→

152 //Append to vector

153 integrals.push_back(integral);

154 resultsFile.close();

155 output_file->cd();

156 waveform_tree->Write();

157 }

158

159 }

160 }

161 //Print number of bad waveforms

162 cout << "Number of bad waveforms " << badwaves << endl;

163 //Sort the integrals in size order from smallest to largest

164 sort(integrals.begin(),integrals.end());

165 //for(std::size_t i = 0; i != integrals.size(); ++i) {

166 //cout << "integral value = " << integrals[i] << "\n";

167 //}

168 Int_t prev = 0;

169 Int_t current = 0;

170 Int_t count = 0; //keeps track of number of events

Appendix B: Written Code 83

171 Int_t eventnumber = -1; //keeps track of what event index

we're looking at↪→

172 for(std::size_t i = 0; i != integrals.size(); ++i) {

173 current = integrals[i]; //set the current value we are

looking at↪→

174 if(prev == current) { //check if current value equals

previous one↪→

175 //cout <<"prev val = "<<prev<<" cur val = "<<

current<<"\n";↪→

176 count = events[eventnumber]; //recall the count

for the specified event↪→

177 //cout << "count = " << count << "\n";

178 events[eventnumber] = count + 1; //increment by

1 as we have another count↪→

179 prev = current; //set the previous value

as the current one↪→

180 }

181 else {

182 Int_t initialval = 1;

183 events.push_back(initialval);

184 counts.push_back(current);

185 eventnumber = eventnumber + 1;

186 prev = current;

187 }

188 }

189 //Produce ADC spectrum

190 TH1D *adc = new TH1D("ADC","ADC Spectrum",1000,0,1000);

191 cout << "Number of counts = "<<counts.size();

192 int numevents = 0;

193 for(std::size_t i = 0; i != events.size(); i++) {

194 adc->SetBinContent(counts[i],events[i]);

195 numevents = numevents+events[i];

196 }

197 cout << "Total number of events = " <<numevents;

198 adc->SetDirectory(0);

199 adc->GetXaxis()->SetTitle("ADC Counts");

200 adc->GetYaxis()->SetTitle("Number of Events");

201 adc->GetYaxis()->SetTitleOffset(1.3);

202 adc->GetYaxis()->CenterTitle();

Appendix B: Written Code 84

203 adc->Draw();

204 adc->Write();

205

206 output_file->Close();

207

208 }

209

210 Double_t GetPeak(TH1D* wave) {

211 //Find peak to get parameters for fit

212 Double_t peak = (Double_t)wave->GetMaximumBin();

213 // cout << "Peak at " << peak << " ns" << endl;

214 return peak;

215 }

216

217 void fitattempt(TH1D* wave, Double_t peak, Double_t lowerRange, Double_t

upperRange) {↪→

218 Double_t gaussmean = peak;

219 Double_t sigma = sqrt(peak);

220 Double_t Amp = (Double_t)wave->GetBinContent((Int_t)peak);

221 Double_t cutoff = sigma/2.0;

222 Double_t expfall = -0.2;

223

224

225 TF1* fitter = new TF1("fitter",

226 gausPart,

227 lowerRange,

228 upperRange,

229 5);

230 fitter->SetParameter(0,gaussmean);

231 fitter->SetParameter(1,sigma);

232 fitter->SetParameter(2,Amp);

233 fitter->SetParameter(3,cutoff);

234 fitter->SetParameter(4,expfall);

235 wave->Fit("fitter","R");

236 fitter->SetLineColor(kRed);

237 fitter->Draw("lsame");

238 wave->Write();

239 }

240

Appendix B: Written Code 85

241 Double_t gausPart(Double_t *x, Double_t *par) {

242 Double_t cutoff = par[3] + par[1];

243 Double_t xdat;

244 Double_t ydat;

245 Double_t rescaledAmp = 0.0;

246 if(x[0] <= cutoff) {

247 xdat = x[0] ;

248 Double_t arg = (xdat - par[0])/par[1];

249 rescaledAmp = par[2]/TMath::Gaus(par[0],par[0],par[1]);

250 ydat = rescaledAmp * TMath::Gaus(xdat,par[0],par[1]);

251 }

252 else{

253 xdat = x[0] ;

254 Double_t gaussExpAmp =

rescaledAmp*TMath::Gaus(xdat,par[0],par[1]);↪→

255 Double_t expFrac = 0.25;

256 Double_t expAmp = gaussExpAmp ;

257 Double_t C = expFrac*expAmp;

258 Double_t A = expAmp - C;

259 Double_t B = par[4];

260 //xdat = xdat- x[0];

261 ydat = A*TMath::Exp(B*xdat);

262 }

263

264 return ydat;

265 }

266

267 //Double_t expPart(Double_t *x, Double_t *par) {

268 //}

	Acknowledgements
	Abstract
	List of Figures
	1 Introduction
	1.1 Cancer Treatment Modalities
	1.1.1 Surgery and Chemotherapy
	1.1.2 Radiotherapy

	1.2 Proton Beam Therapy

	2 Proton Beam Therapy
	2.1 The Bethe Formula
	2.2 Interactions in Proton Therapy
	2.3 The Bragg Peak
	2.4 Imaging and Treatment

	3 Methodology
	3.1 The Detector
	3.2 The Project
	3.2.1 Preliminaries
	3.2.2 ADC Data
	3.2.3 Waveform Scope Data
	3.2.3.1 Binary Conversion

	4 ADC Spectra Analysis
	4.1 The Landau Distribution
	4.2 The Vavilov Distribution
	4.3 Fitting
	4.4 The Convolution Integral
	4.5 Improving the fit
	4.6 ADC Spectrum Results

	5 Waveform Pulse Analysis
	5.1 Multi-peak Signals
	5.2 Waveform Pulse Fitting
	5.3 Reproduction of an ADC Spectrum
	5.4 Waveform Analysis Results

	6 Conclusions
	6.1 ADC Analysis Summary and Further Work
	6.2 Waveform Analysis Summary and Further Work

	Bibliography
	A Results
	A.1 ADC Spectrum Results

	B Written Code
	B.1 ADC Spectrum Fit Macro
	B.2 Binary Data Conversion Jar
	B.3 Waveform Analysis Macro

