
Masters Project Final Report

Design of a Detector for Fast

Treatment Plan Verification in

Proton Radiotherapy

Department of Physics & Astromony

University College London

Daniel Walker

PHASM201 for MSci Physics

supervised by

Dr. Simon Jolly

Prof. Ruben Saakyan

27th September 2018 - 26th March 2018

University College London, Gower Street, London WC1E 6BT
Tel: +44 (0)20 7679 2000
email@ucl.ac.uk
www.ucl.ac.uk

Title Date
Received

Examiner MARK

UCL DEPARTMENT OF PHYSICS AND ASTRONOMY

Submission of coursework for Physics and Astronomy course PHASM201/PHAS3400

Please sign, date and return this form with your coursework by the specified deadline to the Departmental Office.

DECLARATION OF OWNERSHIP

I confirm that I have read and understood the guidelines on plagiarism, that I understand the meaning of
plagiarism and that I may be penalised for submitting work that has been plagiarised.

I confirm that all work will also be submitted electronically and that this can be checked using the JISC
detection service, Turnitin®.

I understand that the work cannot be assessed unless both hard copy and electronic versions of the
work are handed in.

I declare that all material presented in the accompanying work is entirely my own work except where
explicitly and individually indicated and that all sources used in its preparation and all quotations are
clearly cited.

Should this statement prove to be untrue, I recognise the right of the Board of Examiners to recommend what

Signed ___

Print Name ___

Dated ___

Daniel Walker

26 / 03 / 2018

Abstract: The proton beam therapy group at UCL is developing a compact

scintillatior calorimeter for use in treatment plan verification. A project was

undertaken to first develop and extend tools used to process the output from the

group’s detector prototype as recorded by a Teledyne LeCroy HDO6104

Oscilloscope, and then to employ these tools in making measurements of beam

energy in conjunction with positional measurements made using a tracker module

developed by PRaVDA. The aim was to provide proof of principle for the use of the

calorimeter alongside the tracker module in reconstructing dose depositions from

therapeutic beams. The data processing tools were shown to recreate the group’s

previous results using other readout hardware, and results suggest that the use of

the LeCroy oscilloscope for readout may improve the resolution of the detector.

unfortunatley, proof of concept for the concurrent use of the tracker and

calorimeter for measurements reconstructing dose distributions was not achieved

due to a failure to identify paired triggering events across the two detectors.

Furthermore, the PRaVDA tracker module appeared to have unexpected effects on

the distribution of energies in the beam.

Contents

1 Introduction 1

1.1 Cancer and Cancer Treatment 1

1.2 Radiotherapy 1

1.2.1 X-Ray Radiotherapy 2

1.2.2 Proton Radiotherapy 3

1.3 Difficulties Faced by Proton Radiotherapy 5

1.4 Treatment Plan Verification 6

1.5 Goals for the Project 7

1.5.1 The UCL Single-Module Calorimeter Prototype 7

1.5.2 The PRaVDA Tracker 8

2 Developing Analysis Tools 9

2.1 Goals for the Analysis Tools 9

2.2 The LeCroyData Class 10

2.2.1 Approaches to Calculating ADC Spectra 10

3 Data Collection with a PRaVDA Tracker Module 25

3.1 Goals for the Experiment 25

3.2 Experimental Setup and Procedure 26

3.3 Analysis and Results 30

4 Summary and Conclusions 35

4.1 Directions for Further Work 36

– i –

1 Introduction

1.1 Cancer and Cancer Treatment

Cancer is the name given to a class of diseases caused by unregulated and abnormal

cell division, resulting in the formation of malignant tumours and the destruction of

surrounding healthy tissues [1]. A variety of treatment modalities exist, each with

strengths and weaknesses with regards to the nature of different cancers. Modes of

treatment include:

• The direct surgical removal of tumours in excisional therapy, which is highly

effective but only possible when tumours are localised and accessible to surgery.

• The introduction of cycotoxic agents in chemotherapy, which is effective for

treating cancers that are distributed widely through the patient but can lead

to side effects. [2]

• The targeted irradiation of tumours in radiotherapy, which allows for non-

invasive treatment of cancers with minimal side-effects but requires that radi-

ation doses can be sufficiently well targeted and controlled.

Often, multiple modes of treatment are used in conjunction.

1.2 Radiotherapy

The aim of radiotherapy is to initiate apoptosis and thereby cause cell death in

cancerous cells, while minimising damage to healthy tissues. This is achieved by the

disruption of the DNA of cancerous cells by ionising radiation. In the case of external

beam radiotherapies, a class of radiotherapy including x-ray radiotherapy and proton

beam therapy, the source of this ionising radiation is a beam of energetic particles

directed towards a patient’s tumour from apparatus outside of their body. External

beam radiotherapy procedures are non-invasive, meaning that they can be employed

– 1 –

to treat tumours which are inoperable. The effects of treatment by external beam

radiotherapy are also much more localised than in typical chemotherapy procedures,

leading to reduced side effects for the patient. In order for the beam to irradiate

the tumour, however, it must pass through healthy tissues which will consequently

recieve some proportion of the dose delivered to the region targeted for treatment.

This dose of ionising radiation to healthy tissues can lead to damage or even induce

carcinogenesis. The central problem of radiotherapy then becomes that of how to

sufficiently irradiate the tumour while sparing surrounding tissues, especially where

those tissues are sensitive to radiation damage.

1.2.1 X-Ray Radiotherapy

X-ray radiotherapy seeks to deliver ionising radiation to tumours using a beam of

x-ray photons. Photons have no electric charge and therefore do not directly ionise

matter. Instead, the x-ray beam deposits energy by giving rise to free, energetic,

charged particles within the patient. This occurs by the following three mechanisms:

1. The recoil of essentially free electrons in the patient’s tissues from Compton

scattering

2. The liberation of bound electrons via the photoelectric effect

3. Pair production in the electric field of an atomic nucleus

These particles go on to interact Coulombically with electrons and nuclei, resulting

in a path of ionisation along the trajectory of the beam. [3]

The photon-matter interactions occur with a probability proportional to the

number of photons present and dependent on the properties of the material through

which the beam passes. This gives rise to an exponential attenuation of the beam

with depth in the patient, given in Eq. 1.1.

– 2 –

I(x) = I0e
−µ(hν,Z)x (1.1)

where I(x) is the beam intensity at a depth x, I0 is some initial intensity, and µ(hν, Z)

is the linear attenuation coefficient, which describes the interaction probability per

unit length for a photon traversing a given medium. There is a corresponding expo-

nential decay in the dose of ionising radiation delievered with depth in the patient,

after a short build-up period over which the charged particles are initially released.

This behaviour is illustrated by the dashed curve in Fig. 1.

A consequence of this exponential decay in dose is that tissues between the x-ray

source and the tumour will always be more heavily irradiated than the target tumour

for treatment delivered along a single beam axis, and the dose delivered to healthy

tissues must increase in order to treat tumours at greater depths. There will also be

a non-negligible dose deposition beyond the tumour, meaning that doses delivered

along an axis connecting the tumour to critical or highly radiosensitive tissues, for

instance in the brain or spine, carry a risk of side effects and long term health issues

for the patient after treatment.

1.2.2 Proton Radiotherapy

The very different dose-deposition mechanisms between protons and photons make

therapeutic proton beams a promising technology for the safe and effective delivery

of radiotherapy, especially when tumours lie close to critical or radiosensitive tissues.

Coulombic interactions between protons and electrons cause protons deposit energy

in a medium according to the Bethe equation [4]:

−
〈
dE

dx

〉
= kz2

Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax
I2

)
− β2 − δ(βγ)

2

]
(1.2)

where Z and A are the atomic and mass numbers of the medium, z is the charge

of the incident charged particle, c, β, γ, and me take their usual meanings, Tmax

– 3 –

Figure 1: Examples of dose deposition profiles for x-rays (dashed curve), single
protons (grey curve), and superposed proton Bragg peaks (solid black curve). [6]

is the maximum possible kinetic energy transfer from the particle to an electron

in the medium in a collision, I is the mean ionisation potential, k = 4πNAr
2
emec

2,

and δ(βγ) is a density correction term. A key feature of the Bethe equation is the

proportionality of the rate of energy loss −
〈
dE
dx

〉
to the inverse square of the particle

velocity 1
β2 . This proportionality means that at high energies protons lose energy

to the medium they travel through at a low rate. As they slow, this rate sharply

increases, until the proton comes to a sudden stop. This behaviour gives rise to the

"Bragg curve" [5] dose deposition profile shown in grey in Fig. 1.

The proton dose deposition profile has a number of features that make it very

attractive for radiotherapy, in particular the very low entry dose, the finite range,

and the very high, very localised dose known as a "Bragg peak" at the end of the

– 4 –

proton’s path. The low entry dose helps to spare healthy tissues between a proton

beam source and a tumour, while the energy of the beam can be selected (given

sufficient knowledge of the density and composition of the patient’s tissues) to place

the highly localised peak energy deposition inside the tumour. The finite range

means that no dose will be given to critical or radiosensitive tissues provided they

lie beyond the Bragg peak. [7] Many Bragg peaks can be superposed to create a

region of near-uniform dose, a "spread-out Bragg peak" [8], to cover the entirety of

a patient’s tumour while maintaining the advantages of the Bragg curve.

It should be noted that while the primary mode of interaction for theraputic

protons is the electronic interaction described by the Bethe equation and Bragg

curve, there are other interactions of interest in the study of proton radiotherapy. In

particular:

• Coulombic interactions between theraputic protons and atomic nuclei, which

cause the protons to scatter, resulting in a broading of the beam described by

the theory of multiple Coulomb scattering. [9]

• High energy protons can undergo inelastic collisions with atomic nuclei, result-

ing in high energy ions, secondary protons and neutrons as products. Charged

products typically only travel a short distance, creating a small but non-

negligible spread in the deposition from the beam, but neutrons are very highly

penetrating and may present a safety hazard for patients and medical staff. [10]

These interactions are important to consider in a clinical setting, but are but are

largely outside of the focus of this project.

1.3 Difficulties Faced by Proton Radiotherapy

The key assumption on which the success of proton beam therapy relies is that the

peak dose deposition from a proton beam can be reliably made to coincide with a pa-

tient’s tumour. If the energy of the beam is incorrectly calibrated for the treatment

– 5 –

of the patient, some region of healthy tissue will be irradiated with the maximum

dose of the beam, while some region of the target tumour may go untreated. This not

only fails to adequately treat a patient’s cancer, but may additionally do considerable

harm through the irradiation of the healthy tissue. This is especially true in cases

where proton beam therapy has been selected specifically for use near structures too

vulnerable for other modes of caner treatment or in patients such as children who are

particularly susceptible to long-term harm from treatment side-effects. [11] Unfor-

tunately, the technical complexity of treatment hardware for proton beam therapy

and the methodologies by which treatment plans are created1 challenge this assump-

tion. This necessitates that treatment plans are verified as part of quality assurance

procedures before they can be delivered to a patient.

1.4 Treatment Plan Verification

A patient’s treatment plan is the sequence of beams which has been determined op-

timal for the treatment of their tumour. Treatment plan verification is the process by

which a patient’s treatment plan is first delivered to detector hardware. In the par-

ticular case of proton beam therapy, the goal of treatment plan verification is to make

certain that the Bragg peak for each beam will be delivered at the intended depth

and energy by the execution of the treatment plan. This is often accomplished by de-

livering the treatment plan to a water tank dosimeter, water phantom, or a detector

consisting of parallel ionisation chambers separated by layers of a water-equivalent

material. Typically, treatment plan verification procedures using these devices are

slow, wasting time which could be used to treat patients. It is proposed that a

sufficiently small, sufficiently fast scintillation-based calorimeter could be mounted

to the nozzle of a medical proton beam, and make verification measurements of the

1Proton beam therapy treatment plans are currently based on the use of x-ray tomography to
map the density of patient’s tissues. The very different interaction mechanisms for photons and
protons with matter give rise to uncertainties in the region of 1 - 3 mm in the location of the Bragg
peak when x-ray derived density maps are used to design treatment plans using protons. [12]

– 6 –

beam output without the slow setup proceedures associated with current techniques

for treatment plan verification. Coupled with a tracker, such a detector could yield

rich information about the distribution of the dose from the treatment beam.

1.5 Goals for the Project

The UCL Proton Beam Therapy Group is developing a calorimeter of this type by

leveraging in-house expertise from the design of the detector for the SuperNEMO

experiment. In this project, the aims were to:

• Develop tools for data processing and analysis of the output of the prototype

calorimeter recorded by a Teledyne LeCroy HDO6104 Oscilloscope.

• Provide proof of principle for the use of the UCL single-module calorimeter

prototype in conjunction with a tracker module developed by PRaVDA in fast

treatment plan verification.

1.5.1 The UCL Single-Module Calorimeter Prototype

The prototype calorimeter that is the focus of this project is based on R&D for calor-

imeter modules for SuperNEMO. The SuperNEMO experiment is searching for evid-

ence of neutrinoless double-β decays, and the detector required exacting standards

of its calorimetry in terms of both energy and time resolution in order to identify

low-energy (O(1 MeV)) β emission and account for a γ-ray background, but cost

efficiency and hardware longevity were also considered. [13]. These are all highly

desirable properties for the intended medical-use calorimeter.

The UCL single-module calorimeter consists of a single 3 cm × 3 cm × 5 cm

block of plastic scintillator, coupled head-on to a 2" Hamamatsu R13089-100 11

photomultiplier tube (PMT) by an optical gel. The PMT is powered by a Caen

NDT1470 HV Supply, and the group has a variety of options with regards to readout

electronics. This includes the aforementioned LeCroy oscilloscope, and also a digitiser

and ADC manufactured by Caen.

– 7 –

1.5.2 The PRaVDA Tracker

The primary aim of the PRaVDA consortium is to develop tracking and calorimetry

detectors for proton tomography. PRaVDA have demonstrated solid state tracker

modules capable of simultaneously locating multiple therapeutic protons within a

2D plane at beam rates of 2.5 MHz to a high precision, and reconstructing the paths

of protons between pairs of detector modules.[14, 15] This is achieved by the use of

three layers of silicon strip detectors in each module, offset 60◦ from one another to

provide an x−u− v coordinate system in which to identify hits. While the intended

use of the tracker modules is in proton tomography and the construction of better

treatment plans for proton beam therapy, it is believed that they could be used

in conjunction with a calorimeter such as the UCL prototype to reconstruct dose

depositions in 3D.

– 8 –

2 Developing Analysis Tools

The first part of the project was to extend the work of a previous Master’s student

from the group, and develop tools to access, manipulate, and analyse data collected

with a Teledyne LeCroy HDO6104 oscilloscope, which has been used to read out the

electronics from the single-module calorimeter, and may be used for the readout of

future detectors. The preferred mode of operation is for the scope to write a file in

a binary format for every 1000 acquisitions in "sequence mode", in which data is

recorded for a fixed time interval every time a trigger condition is met. This is to

minimise the scope downtime incurred by writing the files, and has the added benefits

of saving file storage space and being fast to manipulate. The previous student had

used a Python script based on the Teledyne LeCroy specification template to first

convert the binary files to ASCII format, which would then be read and processed by

a macro written for the ROOT data analysis software. While effective, this approach

was slow and failed to access and utilise some valuable data recorded by the scope,

particularly timing information related to the acquisition triggers.

2.1 Goals for the Analysis Tools

The task was then to develop code which would enable access to all data contained in

the binary files, and which could provide analysis of the contents quickly by avoiding

the conversion to an intermediate ASCII format. Over the course of development,

the following were decided to be desirable features for the code:

• Rapid, direct access to data contained in LeCroy binary .trc files, including

timing information for acquisition triggers

• Easy interface to the ROOT data analysis package

• Fast construction of ADC spectra

• Identification and mitigation of pileup in recorded waveforms

– 9 –

2.2 The LeCroyData Class

Initially, code was written in Java to access information in LeCroy binary format

.trc files and print it to ASCII format text files. The purpose of this exercise was to

become familiar with the format of the files and identify the previously overlooked

information stored in them. Java was chosen for speed and familiarity, but was

inappropriate for integration with ROOT, which is primarily designed for use as a

set of C++ libraries or as an interpreted C++ scripting tool.

The code responsible for reading the binary data was consequently re-written as

a C++ class named LeCroyData, which implemented methods for access to the file

contents. This was to enable the use of the class as an #include alongside ROOT

libraries in compiled C++ code, to allow the ROOT interpreter to parse and use the

class in interactive sessions, and most importantly to allow for manipulation of data

from the binary files without the slow process of writing to and reading from ASCII

format files.

A command-line application was written using this class to display the contents

a binary file header to the screen, with the option of additionally displaying the

recorded times of acquisition triggers. An example of the use of this application is

shown in Fig. 2.

With access to the binary data and straightforward ROOT compatibility achieved,

development moved towards expanding the code to handle the generation of ADC

spectra.

2.2.1 Approaches to Calculating ADC Spectra

Given reasonable linearity of the light yield of the scintillator, and provided the PMT

does not saturate, the integral of a signal pulse over its duration (a quantity known

as ADC counts) is a measurement of the energy deposited in the detector.[16] The

energies deposited in the detector are expected to follow a Landau distribution [17],

– 10 –

Figure 2: A command-line application for displaying information about a LeCroy
binary file to screen.

with the distribution of ADC counts recorded by the detector taking the form of

a Landau-Gaussian convolution, with the standard deviation of the Gaussian part

corresponding to the finite resolution of the detector. The construction of ADC

spectra from waveforms recorded from the calorimeter involves, for each waveform

recorded:

1. Identifying the baseline of that waveform, which is the value recorded from the

PMT in the absence of a proton signal. This is not typically zero on account

of PMT dark current and noise.

2. Performing "baseline subtraction", in which the value of the waveform at each

point is subtracted from the baseline. Examples of waveforms before and after

baseline subtraction are shown in Fig. 3.

3. Defining a region of interest, to be considered the signal, within the waveform

4. Integrating over the signal to yield a measure of the energy deposited in the

detector by the corresponding event.

– 11 –

Figure 3: A waveform from data collected on the 21st of February, shown before
and after baseline subtraction.

Fitting

The first method implemented for generating ADC spectra was based closely on a

method previously used by the group for processing waveforms recorded from the

detector by a Caen digitizer, and relied heavily on the technology available through

ROOT to fit functions to data.

In the group’s original method, the signal is initially approximated as a Gaussian

function, and ROOT routines are called to fit a function of the form

f(t;α, β, γ, δ) = α exp
[
−
(t− β

γ

)2]
+ δ (2.1)

to the raw signal waveform. The constant term δ is then extracted and taken to be

the baseline of the waveform, and baseline subtraction is performed.

A second fit is then performed on the waveform after baseline subtraction. In

– 12 –

the group’s original method, this is a piecewise function of the form

f(t; ~p) =


a1 exp

[
−
(
t−b1
c1

)2]
in the rise time of the signal

a2 exp
[
−
(
t−b2
c2

)2]
at the peak of the signal

a3 exp
[
− b3t

]
for the decay of the signal

(2.2)

where ~p is a list of 11 parameters containing all ai, bi, ci, and also crossover conditions

for each part of the piecewise function. The χ2 statistic and number of degrees of

freedom (NDF) for this fit are extracted and used to provide a measure of pileup in

the waveform, since a waveform containing multiple signals is typically fit poorly by

the piecewise function. Integration is then carried out on the waveforms, a threshold

value of χ2/NDF is chosen by inspection of the distribution of its value across all

waveforms, and all waveforms with a χ2/NDF less than this value have their integrals

included in the spectrum.

The implementation of this approach written for use with the LeCroyData class

was very similar, with the key differences being:

• The trialling of different functions for fitting the waveform after baseline sub-

traction

• The use of ROOT’s TF1::Integral() method on the fitting function to calculate

the integral over waveforms

Functions trialled for use in the fit included the Landau distribution with ad-

ditional scaling factor, a piecewise function approximating the rise of a signal as a

Gaussian and the decay of the signal as the sum of two exponential functions, and

a function approximating the entire signal as the difference of two exponential func-

tions. These are given as Eq. 2.3, Eq. 2.4, and Eq. 2.5 respectively. It should be noted

that while Eq. 2.3 uses the exact form of the Landau distribution [17], the actual

– 13 –

implementation used ROOT’s TMath::Landau() routine, which provides a high-order

polynomial approximation.

f1(t;µ, σ, α) =
α

π

∫ ∞
0

e−s cos

(
s
(t− µ

σ

)
+

2s

π
log
(s
σ

))
ds (2.3)

f2(t;µ, σ,A,B,C, γ1, γ2, t0) =


A exp

[
−
(
t−µ
σ

)2] for t ≤ t0

Be−γ1t + Ce−γ2t for t > t0

(2.4)

f(t; J, α, β, t0) =


J(e−α(t−t0) − e−β(t−t0)) for t ≥ t0

0 otherwise
(2.5)

Applying this method with Eq 2.3 as the fitting function and a threshold χ2/NDF

of 13 yielded a spectrum qualitatively similar to the group’s earlier results, but

resulted in 189 of the 1000 waveforms in the processed binary file being disregarded.

More importantly, the result of waveform integration was not strictly representative

of the energy deposited in the detector as the integration was carried out on the

fitting function and not the signal. Furthermore, the processing of a single binary

file of 1000 waveforms took approximately 5-10 minutes, implying processing times

of hours for a full data collection run of many tens of files. These critical issues

were addressed by implementing a method for integration directly on the waveform,

and by seeking more time-efficient approaches to identifying signals and waveform

baselines.

Investigation of Methods for Numerical Integration

The first issue to resolve was the inappropriate approach to integrating over the

signal. Familiarity with numerical methods such as the trapezium rule led to an

investigation of other Newton-Cotes formulae: formulae for numerical integration

which rely on the evaluation of the integrand at fixed intervals over the domain of

– 14 –

the integration. These formulae take the form

∫ b

a

f(x)dx ≈
N∑
n=0

wnf(a+ nh) (2.6)

where h = b−a
N

and wn are weighting factors. They are an attractive option for

integrating over signals recorded by an oscilloscope at a fixed sampling rate, where

values of the integrand are only known at fixed intervals.

Three Newton-Cotes methods were trialled for use in the generation of ADC

spectra from LeCroy oscilloscope output, and were compared to the method im-

plemented by the previous student. The methods trialled were the five-point rule

known as Boole’s rule, the trapezium rule, and a "composite" rule formed by compar-

ing terms in Simpson’s three-point and 3/8 rules. [18] For the trials, each method was

implemented in Python and used to integrate Eq. 2.5; a function chosen to emulate

signals from the detector after baseline subtraction.

An example of this function fit to a detector signal is shown in Fig. 4, which

demonstrates the appropriateness of the use of the function to test the performance

of integration methods for actual detector signals. It is important that the chosen

function should be possible to integrate analytically in order to properly evaluate the

error introduced by the approximate integral (at least to within machine precision).

In each case, the limits of the integral and the values of the function parameters

were kept fixed and the number of points at which the function was evaluated in the

approximate integral was increased, and the error computed. The results are shown

in Fig. 5.

While for very few sample points Boole’s rule gives the smallest fractional error,

the error incurred by the composite method rapidly falls below that of every other

method presented as the number of points sampled increases. It is surprising that

Boole’s rule, a fifth-order method, is quickly outperformed by all other methods

trialled and in fact performs worse at higher numbers of sampling points than when

– 15 –

Figure 4: Eq. 2.5 fit to a detector signal using the curve_fit() method from Python’s
SciPy module. The function and signal share similar peaks and curvature.

given fewer sampling points. This is likely due to an error in the implementation,

but the source of this error could not be identified.

The composite rule integration method was selected as the best of the trialled

methods, and an implementation was written in C++ for use in all subsequent code

used to generate ADC spectra.

Waveform Median Baseline, Schmitt Trigger Signal Identification

In order to speed up processing, approaches to calculating waveform baselines and

identifying signals were sought that had no reliance on ROOT’s function fitting

routines.

In the first attempt at developing an approach under this restriction, the me-

dian voltage recorded across the waveform was used as an estimate for the waveform

baseline. This was motivated by the assumption that the "typical" value of a wave-

form was a value from the baseline behaviour, given that the acquisition window is

– 16 –

Figure 5: Comparing the accuracy of numerical integration formulae. The error
fraction is computed as |

∫ b
a f(x)dx−F (x,a,b)|∫ b

a f(x)dx
where F (x, a, b) is the result of the numerical

integration method on f(x) between a and b.

much wider than the width of a signal pulse while the mean average would be skewed

by the presence of the signal, and the mode average rendered unreliable by noise.

To avoid discarding data where possible, a method was sought to select and

integrate over signals within a waveform while ignoring pileup. One attempt looked

to identify signals using the structure of a typical signal pulse. With function fitting

techniques too computationally expensive, the logic of a Schmitt trigger [19] was

implemented to select signals based on their rising and falling edges. By this method,

the user was able to specify a rising edge threshold and a falling edge threshold. When

the waveform voltage rises above the rising edge threshold, the waveform voltage and

corresponding time point are recorded and until the waveform voltage falls below the

falling edge threshold all voltage values are appended to an array of "signal" voltages.

– 17 –

Integration is carried out on this array of voltages, yielding a measure of the energy

deposited by a particle detected at the recorded time point. A graphic representing

the selection of a signal pulse by Schmitt trigger logic is given in Fig. 6.

Figure 6: A demonstration of Schmitt trigger logic for the definition of a signal
pulse within a waveform. Orange points show the data points selected as part of the
signal, with the area underneath showing the corresponding ADC counts.

The median baseline and Schmitt trigger methods were applied to data taken

by the group using the LeCroy oscilloscope on the 2nd of August 2016 at the Clat-

terbridge Cancer Centre, for which equivalent runs had been taken with the Caen

ADC. A spectrum was generated from a single file binary file containing 1000 wave-

forms. There was a significant speedup using the new methods, with the time taken

to produce a spectrum reduced to something in the region of half a second. The

resultant spectrum was qualitatively similar to the expected Landau-Gaussian con-

volution, but a direct side-to-side comparison with the equivalent Caen ADC run

demonstrates that this approach is not compatible with the group’s previous work,

as it underestimates the position of the peak in ADC counts. This is shown in Fig. 7.

– 18 –

Figure 7: Results of the calculation of ADC spectra from data collected by the
group in August 2016 by use of the Schmitt trigger logic for signal selection and
the waveform median to estimate the baseline. The distribution takes the expected
form, but the position of the peak in ADC counts in underestimated by comparison
to the group’s results at the time.

There are a number of weaknesses to the methods described here. Approximat-

ing the waveform baseline with the median value of the waveform relies on the low

density of signal pulses in the waveform and will fail to yield a value representative of

the baseline behaviour in cases of heavy pileup. Even in cases where the assumption

of low density of signals in a waveform is valid, the median will only yield one value

sampled from the baseline behaviour or an average of two such values, where the

desired value for the baseline estimate would account for all values of the baseline

behaviour of the waveform. Though an attractive statistical trick that can be eval-

uated "mindlessly" across a waveform, the median is an inappropriate estimator of

the baseline. The Schmitt trigger logic for detecting signals in the waveform was

– 19 –

found to be disrupted by noise in the baseline, and for reliable use required that the

rising and falling thresholds were set significanlty above the level of the noise. This

left the early rises and long tails of signal pulses inaccessible, which was likely a key

contributor to the underestimation of the peak ADC counts by comparison to the

Caen spectrum. Furthermore, the Schmitt trigger logic is only able to distinguish

between pulses which are sufficiently separated in time, as the long tail of one signal

pulse may not fall below the falling threshold before the rising edge of the next pulse.

This effect is illustrated in Fig. 8.

Figure 8: An example of a failure condition for the Schmitt trigger logic for signal
identification. This example has been constructed from the sum of two signal-like
functions as given in Eq. 2.5, but this behaviour was observed in actual test datasets.

Waveform Median Baseline, Rising Edge and Fixed Window Signal Iden-

tification

Developed concurrently with the Schmitt trigger method was a method for selecting

signals within a waveform more closely based on the charge integration procedure

carried out by the Caen ADC. Coming from the same stage in development, it sim-

– 20 –

ilarly was implemented alongside the flawed baseline subtraction routine based on

the median value of the waveform. In this method, the rising edge trigger from the

Schmitt method was used to determine a starting point for a window of integration

which spanned a fixed interval in time. Similarly to the Schmitt trigger method, the

user was free to specify the rising edge trigger level and the width of the integration

window. The results of applying this method to a full run of 51000 waveforms is

shown in Fig. 9 alongside the equivalent Caen ADC run. The processing time for

this method, per 1000 waveform binary file, was not perceptably different from that

for the Schmitt trigger method within an interactive ROOT session.

Figure 9: The spectrum generated by estimation of the baseline as the median of
the waveform, with the signal defined as a fixed time interval after a user-set rising
edge trigger.

It was again observed that the spectrum took qualitatively the same form as the

Caen spectrum, with a promisingly narrow peak. However, this method was shown

to overestimate the peak ADC counts by comparison to the Caen result. This may

– 21 –

have been in part due to the inappropriate baseline subtraction strategy, but could

also have arisen from differences in how the fixed integration window was defined

for the Caen and LeCroyData procedures. Specifically, the Caen integration window

has an offset parameter that can be used to determine a point before the trigger at

which the integration should start. This feature was absent in this implementation

of the LeCroyData method.

Pre-Trigger Mean Baseline, Full Waveform Integration

To better estimate the value of the baseline, a method was devised to identify a

region of the waveform as baseline and evaluate the mean value over just this region.

This differs from both the fitting and median approaches implemented above in that

these aim to estimate the baseline by an operation on the entire waveform. Initially,

the region considered as baseline was taken to be all time points t < 0 with the

zero point in time for a given waveform corresponding to the time of the trigger

for that waveform’s acquisition by the LeCroy oscilloscope. The mean and standard

deviation of this region were calculated, with the mean taken as the value of the

baseline for the waveform and the standard deviation used to test for the presence

of unexpected structure such as signal pulses in the pre-trigger region. Here, the

standard deviation was compared to a threshold level which could be set by the

user and if the threshold was exceeded the waveform was discarded. This method

was initially tested without a corresponding method for selecting signals within a

waveform, with integration taking place across the entire waveform. This yielded

a spectrum with a much broader peak than the Caen ADC, with a much higher

peak value of ADC counts. More importantly, however, it also yielded a spectrum

containing negative values of ADC counts, which was recognised as being distinctly

unphysical and necessarily a consequence of the method for baseline estimation and

subtraction. Closer inspection revealed that a part of the leading edge of the signal

pulses occurred prior to the time point t = 0, and this very small structure was

– 22 –

heavily skewing the value of the mean whilst passing under default values for the

standard deviation threshold. The baseline region was refined to be the first 90%

of points in the region prior to time t = 0 and the default value of the standard

deviation reduced, resolving the issue.

Pre-Trigger Mean Baseline, Caen-Like Window

With a more valid approach to baseline estimation established, another attempt was

made to recreate the group’s previous results with the Caen ADC. Here, the aim was

to as accurately as possible mimic the procedure by which the Caen ADC performs

integration. As described above, the Caen ADC integrates a signal from an offset

before a signal trigger for a fixed period of time. Here, the trigger used was the trigger

time defined by the LeCroy oscilloscope when the waveform was recorded and the

offset and integral width were parameters to be set by the user. The width used for

the Caen ADC integration was 150 ns and this was made the default value of the

width parameter for the LeCroyData integration. The offset parameter was varied

to see how the location of the window of integration affected the resulting spectrum.

The closest recreation of the Caen ADC spectrum was achieved with the window of

integration set to be symmetric about the trigger time. The results of processing the

full run of 51000 waveforms and a comparison to the target Caen ADC spectrum are

shown in Fig. 10 and with a logarithmic frequency density axis for improved detail

in Fig. 11.

– 23 –

Figure 10: Demonstration of the LeCroyData analysis code recreating the group’s
previous results using the Caen ADC.

For both the LeCroyData and Caen ADC spectra, a Gaussian function was fit

to the peak, again using the SciPy curve_fit() method, and its mean extracted as a

measure of the peak position. By this measure, the LeCroyData spectrum peak lies

within 0.003% of the value of the peak of the Caen ADC spectrum. In Fig 11, it

can be seen that the Caen spectrum is closely tracked by the LeCroyData spectrum

across almost its entire domain, with the exceptions being at the peak where the

LeCroyData spectrum’s peak is narrower, and at ADC counts fewer than approx-

imately 2000, where the Caen spectrum continues to ADC counts fewer than 1000

while none are recorded in the LeCroyData spectrum. The narrower peak implies an

improved resolution in the measurement of detector ADC counts and consequently

proton energy, while the shorter tail implies that the LeCroy oscilloscope’s trigger

level was set too high to register these lower-energy protons.

The code for the LeCroyData class, including minor later modifications required

by the project and described in section 3, are included in appendix 4.1.

– 24 –

Figure 11: Fig 10 redrawn with frequency density on a lograithmic scale. Features
such as the different minimum detected ADC counts and unusual kink in both spectra
in the region from approx. 5000 to approx. 6000 ADC counts are more clearly visible.

3 Data Collection with a PRaVDA Tracker Module

On the 21st of February, the UCL Single-Module Calorimeter and LeCroy HDO6104

were taken to the University of Birmingham for a test beam, in which calorimeter

data was collected concurrently with tracking data from one PRaVDA tracker mod-

ule.

3.1 Goals for the Experiment

The goal of the experiment was to demonstrate proof of principle for the use of

the two detectors as a system for fast treatment plan verification. This was to be

achieved by using the detectors to jointly assign a measurement of position (from

the PRaVDA tracker) and a measurement of energy (from the UCL calorimeter) to

protons passing first through the tracker and then into the calorimeter. The beam

was first to be directed straight into the detector array, then via a target to degrade

– 25 –

the beam energy, then finally partially degraded by a target covering half the lateral

profile of the beam. It was believed that timing information extracted from each

detector could be used to correlate a positional measurement with one of energy and

generate a profile of energy deposition in 2D. Proof of principle would be achieved

by reconstructing the shape of the beam-degrading target in the energy deposition

profile.

3.2 Experimental Setup and Procedure

On the day of the experiment, the cyclotron at the University of Birmingham was

experiencing difficulties with the RF circuit used to drive the electrodes and con-

sequently delivered a 28 ± 0.15 MeV proton beam as opposed to the initial target of

36 MeV. The cyclotron produced a beam of 50mm diameter, which was then passed

through collimators of either 2mm or 5mm diameter, having the effect of reducing

the rate of particles entering the detectors from the rate at which they were emitted

by the accelerator in addition to collimating the beam.

The PRaVDA tracker was mounted to a bench near to the beam nozzle, with

the UCL calorimeter placed on a stand behind it, as shown in figures 12 and 13.

The detectors were aligned by the application of a small piece of radiographic film

to the entry window of the UCL calorimeter, running the beam, and then adjusting

the position of the calorimeter and repeating until the resulting dark spot on the

film was approximately centred. The calorimeter PMT was powered by a Caen

NDT1470 high voltage supply over an SHV cable to the detector enclosure and PMT

signals were read out by the LeCroy HDO6104 via an SMA to BNC cable from the

enclosure. The HV supply was connected to a control laptop for monitoring and

operation. The HV supply, the oscilloscope, and the control laptop remained in the

experiment room with the detector. The oscilloscope and control laptop were both

connected to a network hub in the experiment room via ethernet cables, which in

turn was connected to a second network hub in the control room. Two laptops were

– 26 –

Figure 12: The PRaVDA tracker module mounted on the bench in front of the
beam nozzle. The stand on which the UCL calorimeter prototype was placed can be
seen in front of the tracker.

connected to this control room hub. Each one ran a remote desktop, one to control

the oscilloscope and one to control the HV supply. A schematic of the control setup

is shown in Fig. 14. Inside the detector enclosure, the PMT was mounted in a holder

on an optical breadboard and coupled head-on to the scintillator block with optical

gel.

The lights in the experimental room were switched off, and the HV supply set to

-900 V. The PMT dark current was recorded as 150 muA. The oscilloscope was set to

trigger on a negative edge. Data was collected for a range of conditions, summarised

in Table 1. Where the beam energy was degraded, this was achieved by affixing 1

mm polyethylene (PE) sheets to the collimator, before any component of the detector

array. Examples are shown in Fig. 15 of sheets used to degrade the entire beam and

– 27 –

Figure 13: The interior of the UCL calorimeter prototype enclosure. The PMT and
its holder are visible, as is the PRaVDA tracker module to which the calorimeter is
aligned.

part of the beam profile respectively.

The first four entries in Table 1 correspond to investigating appropriate trigger

levels and beam rates to use in order to minimise pileup. The PRaVDA tracker

was used to establish the rate of protons entering the detector, and the response

of the calorimeter was monitored to identify pileup. It was found that appropriate

– 28 –

Figure 14: Schematic representing the control setup for the calorimeter.

Figure 15: Left: The 2 mm collimator, with 1 mm polyethylene cover. Right: The
5 mm collimator with 1 mm polyethylene half-cover.

detection rates were on the order of 10 kHz. The trigger level was set to 140 mV in

order to reduce background effects. The remaining entries in Table 1 correspond to

tests of the detectors in the presence and absence of a target to degrade the beam

energy.

Between the two test types, a total of 11 runs were performed with both detectors,

– 29 –

Scope Trigger
Level

Beam Current /
Rate

Collimator Degrader

-100 mV ≈10 kHz 2 mm None
-140 mV 150 pA / ≈10 kHz 2 mm None
-70 mV 260 pA 2 mm None
-40 mV 260 pA 2 mm None
-140 mV 1 nA 2 mm None
-140 mV 220 pA 2 mm 1 mm PE
-140 mV 160 pA 2 mm 1 mm PE
-140 mV 10 pA / ≈30 kHz 5 mm None
-140 mV 10 pA 5 mm 1 mm PE
-140 mV 10 pA 5 mm 1 mm PE half-

cover

Table 1: Summary of test conditions used at the beam test of the combined calori-
meter and tracker detector on the 21st of February.

including repeat runs. In each run, the LeCroy oscilloscope first began recording the

PMT output, then the PRaVDA tracker began recording for a period of 60 s. During

this period, the beam was started. Once the PRaVDA recording period had elapsed,

first the beam, and then recording of the calorimeter output, were stopped. The

recording startup sequence was intended to provide a reference point for the start of

the beam in the data collected by each detector.

3.3 Analysis and Results

ASCII format files containing nanosecond-precision timestamps and Cartesian po-

sitional coordinates for tracker hits in each of the eleven runs were provided by

Marianna Chiesa, a Master’s student working with the PRaVDA tracker modules.

Modifications and exstensions were made to the LeCroyData code to make repres-

entation of timestamps consistent across datasets taken with both detectors and to

allow easy manipulation of the tracker data alongside LeCroyData objects. With

these adjustments made, the expanded code was deployed in the analysis of the data

collected on the 21st of February.

Initially, calorimeter data from five runs were loaded: for the 2 mm collimator

– 30 –

with and without the 1 mm PE sheet, the 5 mm collimator with and without the

1 mm PE sheet, and the 5 mm collimator half-covered by the 1 mm PE sheet. In

all cases, only the data recorded with the 140 mV trigger level was considered. The

ADC spectra generated for each of the 2 mm collimator runs are shown in Fig. 16

and the spectra for the 5 mm collimator runs are shown at the top of Fig. 17. In

each case, the spectra were seen to be much less well defined than was expected

from results shown in section 2.2. Peaks of the distributions were much broader

than those seen previously. Long tails towards low ADC counts are only observed

in the absence of the PE collimator cover, and the heights of such tails are only

marginally less than the heights of the peaks in these distributions. Upon seeing this

result, it was initially assumed that the width or offset of the integration window

needed to be adjusted for the new datasets, but varying these parameters yielded

virtually identical results when the bounds of the integration enclosed the peak of the

pulse. This wide spread is inconsistent with the stated energy spread in the cyclotron

output, and it is suspected that it is caused by the presence of the PRaVDA tracker

module upstream of the calorimeter.

Importantly for the goal of reconstructing the shape of the PE half-cover in

the beam profile, it was seen that the spectrum corresponding to that test condition

featured a higher and a lower peak in the ADC counts. Comparison of the sum of the

spectra with and without the complete cover of PE to the spectrum for the PE half-

cover in the lower part of Fig. 17 indicates that the half-cover spectrum is composed

of samples from each of the two distributions as expected. It is interesting to note

that the low ADC count peak is smaller and the high ADC count peak larger in

the half-cover spectrum than in the sum of the covered and uncovered spectra. This

reflects the fact that the "half-cover" in fact covers less than half of the collimator

aperture, which can be seen by closer inspection of Fig. 15.

Attempts were then made to reconstruct the shape of the half-cover in a 2D

– 31 –

Figure 16: The ADC spectra calculated from runs using a 2 mm collimator with
and without the 1 mm PE cover.

distribution of ADC counts using the data from each detector combined. The tracker

data for the run was loaded and a histogram of the x and y coordinates of the hits

was constructed. This plot is shown in Fig. 18.

Timestamps were then compared for the calorimeter and tracker hits. The first

recorded hit for the calorimeter was found to be removed by approximately 3 minutes

and 39 seconds from the first hit recorded by the tracker, with the duration of

each run being on the order of a minute. This was attributed to a discrepancy

between the clocks on the two detectors, as the runs were certainly taken concurrently

even if the first hits in each detector were not simultaneous. Unfortunately, this

discrepancy meant that correlation of a tracker hit with a calorimeter hit through a

shared "global" timestamp was impossible.

Instead, an offset was applied to each timestamp in the tracker dataset such

that one hit selected from the calorimeter dataset coincided perfectly with one hit

– 32 –

Figure 17: Top left: The ADC spectra calculated from runs using a 5 mm collimator
with and without the 1 mm PE cover. Top right: The ADC spectrum calculated from
the run using a 5 mm collimator half-covered by 1 mm PE. Bottom: The spectrum
on the top right demonstrating a similar structure to the sum of the two shown in
the top left.

selected from the tracker dataset to force a pairing. Each hit in the calorimeter

dataset was then paired with the hit in the tracker dataset which had the closest

possible timestamp. Pairs with an absolute time difference greater than a threshold

value were rejected, with the remaining pairs considered "matched". This process was

repeated for many choices of forced pairs in order to seek the choice of offset resulting

– 33 –

Figure 18: The spatial distribution of hits recorded by the PRaVDA tracker module
in the case of the 5 mm collimator half-covered by 1 mm PE.

in the most matching pairs, which was assumed to correspond to a "correct" offset.

Initially, the procedure was to be carried out for all possible pairs in the two datasets

for completeness, but this was found to be unreasonably computationally intensive.

Instead, the first 1000 hits in the calorimeter dataset and the first 2000 points in

the tracker dataset were considered, the ratio of these numbers being approximately

the ratio of the number of hits recorded by each detector. The threshold for allowed

pairings was first set to 10−7 seconds. This was motivated by a calculation of the time

of flight for 28 MeV protons over a distance on the order of 1 cm, found to be on the

order 10−10 to 10−9 seconds, making this choice of threshold quite generous. Under

these conditions, the only matched pairs found were the forced matches assumed at

the start of the search. The threshold was relaxed to 10−5 seconds, resulting in a

maximum of 999 matches for the same search region. The positional coordinates of

these matched hits were binned in a 2D histogram as in Fig. 18, weighted by the

– 34 –

corresponding ADC counts. Division by the the unweighted spatial distribution of

tracker hits yielded the average ADC counts for a proton passing through each region

of the tracker under the assumption that the matched hits corresponded to the same

proton. The shape of the PE half-cover was not evident in the distribution, and

the validity of the matching process with this relaxed threshold is dubious. It was

concluded that correlation of hits across the two detectors had failed.

It is suspected that this failure is due to the different systems responsible for trig-

gering each detector. With each detector triggered automatically and independently

on incoming signals, there is no guarantee of correspondence between a hit recorded

by one detector and any hit recorded by the other. With no correlation between hit

position and hit time for particles in the beam, a "best fitting times" approach is

insufficient to pair hits across the two detectors.

4 Summary and Conclusions

The first part of the project can be considered a success. Access to data stored in

LeCroy binary files, and calculation of the ADC spectra from this data, was made to

be fast and straightforward, and the process was made to integrate directly with the

group’s chosen data analysis package. Spectra generated were shown to be consistent

with the group’s previous work, and a narrowing of the spectrum peak may imply

that the LeCroy oscilloscope could provide readout of the prototype single-module

calorimeter with an improved resolution by comparison to the Caen ADC. It should

be noted, however, that the final implementation of the LeCroyData class does not

particularly satisfy the goal of identifying and mitigating the effects of pileup in the

calorimeter output.

The objective of the second part of the project was failed. Proof of principle

could not be established for the use of the calorimeter prototype with PRaVDA

tracker modules for the recreation of dose depositions from proton beams. This is

– 35 –

primarily due to the insufficiency of the timestamps recorded by the two detectors for

the pairing of events between them. Furthermore, the spreading of the beam energy

spectrum apparently caused by the tracker module may present difficulties for the

use of the two detectors as a system for mapping dose depositions in a clinical setting,

where ideally measurements are directly representative of the energies delievered by

the beam.

4.1 Directions for Further Work

• The PRaVDA tracker recently recieved an upgrade allowing the output of a

signal when the tracker is triggered. Such a signal could be used to trigger the

LeCroy oscilloscope, and thereby overcome the difficulties encountered here

with syncronising events between the two detectors. This would require only

minimal modifications to the code written in this project for the analysis of the

oscilloscope output, and may provide the results which could not be achieved

here.

• In order to better identify the source of the spectrum smearing observed in

measurements taken with the two detectors, a physics simulation package such

as GEANT4 should be used to model the PRaVDA tracker and its interactions

with the incoming proton beam.

• There are a number of modifications that could be made to the LeCroyData

class and supporting code in order to improve its efficiency and user friend-

liness. Efficiency gains could be made by parallelisation of the calculation

of ADC counts across many waveforms, and the structure of the class could

be made more modular in order to allow the use of customised proceedures

without requiring modifications to the base class responsible for loading binary

data. LeCroyData objects also currently have a relatively large footprint in

memory. Unwanted data fields could be identified and removed from the class

– 36 –

to reduce the size of the resulting objects. Steps could also be taken to better

quantify the resolution achieved by the LeCroy oscilloscope through the use of

the LeCroyData code.

– 37 –

References

[1] Elizabeth Martin. Concise colour medical dictionary. Oxford University Press,

2015.

[2] A. Coates et al. “On the receiving end–patient perception of the side-effects of

cancer chemotherapy.” In: Eur. J. Cancer 19.2 (Feb. 1983), pp. 203–208.

[3] Hervé Fanet. Photon-based medical imagery. John Wiley & Sons, 2013.

[4] C. Patrigani et al. “Review of Particle Physics”. In: Chinese Physics C 40.10

(2016).

[5] William Henry Bragg and R Kleeman. “LXXIV. On the ionization curves of

radium”. In: The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science 8.48 (1904), pp. 726–738.

[6] Torunn I. Yock and Nancy J. Tarbell. “Technology Insight: proton beam radio-

therapy for treatment in pediatric brain tumors”. In: Nature Clinical Practice

Oncology 1 (Dec. 2004). Review Article. url: http://dx.doi.org/10.1038/

ncponc0090.

[7] Robert R Wilson. “Radiological use of fast protons”. In: Radiology 47.5 (1946),

pp. 487–491.

[8] David Jette and Weimin Chen. “Creating a spread-out Bragg peak in proton

beams”. In: Physics in Medicine & Biology 56.11 (2011), N131.

[9] Jerry B Marion and Barbara A Zimmerman. “Multiple scattering of charged

particles”. In: Nuclear Instruments and Methods 51.1 (1967), pp. 93–101.

[10] Wayne D Newhauser and Rui Zhang. “The physics of proton therapy”. In:

Physics in Medicine & Biology 60.8 (2015), R155.

– 38 –

http://dx.doi.org/10.1038/ncponc0090
http://dx.doi.org/10.1038/ncponc0090

[11] G. T. Armstrong et. al. “Aging and Risk of Severe, Disabling, Life-Threatening,

and Fatal Events in the Childhood Cancer Survivor Study”. In: Journal of

Clinical Oncology 32.12 (Apr. 2014).

[12] B Schaffner and E Pedroni. “The precision of proton range calculations in pro-

ton radiotherapy treatment planning: experimental verification of the relation

between CT-HU and proton stopping power”. In: Physics in Medicine & Bio-

logy 43.6 (1998), p. 1579.

[13] Anastasia Freshville, SuperNEMO Collaboration et al. “Calorimeter R&D for

the SuperNEMO Double Beta Decay Experiment”. In: Journal of Physics: Con-

ference Series. Vol. 293. 1. IOP Publishing. 2011, p. 012037.

[14] Robert P Johnson. “Review of medical radiography and tomography with pro-

ton beams”. In: Reports on Progress in Physics 81.1 (2017).

[15] JT Taylor et al. “A new silicon tracker for proton imaging and dosimetry”. In:

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 831 (2016), pp. 362–366.

[16] J.B. Birks. The Theory and Practice of Scintillation Counting. Oxford: Perga-

mon, 1964.

[17] D.H. Wilkinson. “Ionization energy loss by charged particles Part I. The Landau

distribution”. In: Nuclear Instruments and Methods in Physics Research Sec-

tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 383.2

(1996), pp. 513–515. issn: 0168-9002. doi: https://doi.org/10.1016/

S0168-9002(96)00774-7. url: http://www.sciencedirect.com/science/

article/pii/S0168900296007747.

[18] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. U.S. Department of Commerce,

– 39 –

https://doi.org/https://doi.org/10.1016/S0168-9002(96)00774-7
https://doi.org/https://doi.org/10.1016/S0168-9002(96)00774-7
http://www.sciencedirect.com/science/article/pii/S0168900296007747
http://www.sciencedirect.com/science/article/pii/S0168900296007747

NIST. url: https://app.knovel.com/hotlink/khtml/id:kt00A81VR1/

handbook-mathematical/integration.

[19] John Daintith and Edmund Wright. A Dictionary of Computing (6 ed.) url:

http://www.oxfordreference.com/view/10.1093/acref/9780199234004.

001.0001/acref-9780199234004-e-4622 (visited on 20/03/2018).

– 40 –

https://app.knovel.com/hotlink/khtml/id:kt00A81VR1/handbook-mathematical/integration
https://app.knovel.com/hotlink/khtml/id:kt00A81VR1/handbook-mathematical/integration
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004-e-4622
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004-e-4622

Appendix

The final implementation of the LeCroyData class used in this project, including

modifications required in section 3. Additional helper scripts and classes, such as

those handling the event timestamps and the pairing of hits between the calorimeter

and tracker are excluded for brevity.

1 //LECROYHIT CLASS//

2

3 c l a s s l e c r oyH i t {

4 // To be generated by the LeCroyData c l a s s as a way to handle a

s i n g l e

5 // ADC counts record along with i t s a s s o c i a t ed TimeStamp

6 // This makes i t e a s i e r to handle runs spanning mul t ip l e binary f i l e s

7 pr i va t e :

8 TimeStamp∗ t ;

9 double adc_counts ;

10

11 pub l i c :

12 l e c r oyH i t (double e , TimeStamp∗ t) ;

13 TimeStamp∗ getTime () ;

14 double getCounts () ;

15 } ;

16

17

18 l e c r oyH i t : : l e c r oyH i t (double e , TimeStamp∗ t) { adc_counts = e ; th i s−>t =

t ; }

19 TimeStamp∗ l e c r oyH i t : : getTime () { re turn t ; }

20 double l e c r oyH i t : : getCounts () { re turn adc_counts ; }

21

22

23

24

– 41 –

25 //LECROYDATA CLASS//

26

27 c l a s s LeCroyData {

28

29 pr i va t e : // Dec lar ing f i e l d s to s t o r e data

30

31 f r i e nd c l a s s TimeStamp ;

32

33 std : : s t r i n g fi leName , templateName , instrumentName , traceLabe l ,

timestamp ,

34 userText , vertUnit , hor i zUni t ;

35

36 char ∗ f i l e B u f f e r ; //An array o f a l l the bytes in the binary . t r c

f i l e

37

38 i n t wavedescIndex , f i l e S i z e , pointsPerAcq , pointsPerWindow ;

39

40 shor t commOrder , commType , nominalBits ;

41

42 long waveDescr iptorS ize , userTextSize , waveArraySize ,

t r i g t imeArrayS ize , subArrayCount ,

43 instrumentNumber , f i r s tVa l i dPo i n t , l a s tVa l idPo int , spars ingFactor ,

segmentIndex ;

44

45 f l o a t ve r t i ca lGa in , v e r t i c a lO f f s e t , h o r i z I n t e r va l , hor i zUncerta inty

, acqu i s i t i onDurat i on , maxValue , minValue ;

46

47 double ∗ tr igt imeArray , ∗ hor i zOf f s e tArray , ∗ timeArray , ∗waveArray ,

maxBaselineSigma = 15 . , b lStar t , blEnd , o f f s e t = −60. , window= 150 . ,

dx ;

48

49 std : : vector<double> spectrumTime ;

50 std : : vector<double> spectrumADCCounts ;

– 42 –

51 std : : vector<double∗> goodAcqs ;

52 std : : vector<int> goodAcqNums ;

53 i n t spectrumSize ;

54

55 bool i sTrace (std : : s t r i n g f i leName) ; //Returns t rue i f the l a s t 4

cha ra c t e r s in f i leName are c on s i s t e n t with the f i l e ex t ens i on f o r

56

57 shor t getShort (i n t byteLocat ion) ; // Creates a shor t from the

f i l e B u f f e r , s t a r t i n g at byteLocat ion

58 long getLong (i n t byteLocat ion) ; // Creates a long from the

f i l e B u f f e r , s t a r t i n g at byteLocat ion

59 f l o a t ge tF loat (i n t byteLocat ion) ; // Creates a f l o a t from the

f i l e B u f f e r , s t a r t i n g at byteLocat ion

60 double getDouble (i n t byteLocat ion) ; // Creates a double from the

f i l e B u f f e r , s t a r t i n g at byteLocat ion

61 i n t g e t In t (i n t byteLocat ion) ; // Creates an i n t from the f i l e B u f f e r ,

s t a r t i n g at byteLocat ion

62 s igned char getByte (i n t byteLocat ion) ; //Returns the byte at

byteLocat ion in the f i l e B u f f e r as a s igned char

63 std : : s t r i n g get16CharStr ing (i n t byteLocat ion) ; // Creates a s t r i n g

o f 16 cha ra c t e r s from the f i l e B u f f e r , s t a r t i n g at byteLocat ion

64 std : : s t r i n g getText (i n t byteLocation , long byteLength) ; // Creates a

s t r i n g o f byteLength cha ra c t e r s from the f i l e B u f f e r , s t a r t i n g at

byteLocat ion

65 std : : s t r i n g makeTimestamp(i n t byteLocat ion) ; // Creates a s t r i n g

d e s c r i b i n g when the f i l e was c rea ted us ing in fo rmat ion from

byteLocat ion in the f i l e B u f f e r

66

67 void buildSpectrum () ;

68 double compos i t e In teg ra t e (double ∗ yPoints , long nPoints , double

xStep) ;

69 void ba s e l i n eSub t r a c t i on () ;

– 43 –

70 double meanEstimateBasel ine (double ∗ y , double ∗ timeArray , double

s i gL im i t) ;

71

72 pub l i c :

73 LeCroyData (std : : s t r i n g f i leName) ; //Construct a LeCroyData ob j e c t

us ing the f i leName s p e c i f y i n g the f i l e to load

74 ~LeCroyData (void) ;

75

76 double ∗ getWaveArray (void) ; //Getter f o r vec to r o f o s c i l l o s c o p e

vo l tage va lue s

77 double ∗ getAcqWave (i n t segment) ; //Getter f o r vec to r o f vo l tage

va lue s f o r a s i n g l e a c q u i s i t i o n indexed by the i n t segment

78

79 double ∗ getTimeArray (void) ; //Getter f o r vec to r o f o s c i l l o s c o p e

time va lue s

80 double ∗ getAcqTime (i n t segment) ; //Getter f o r vec to r o f time va lue s

f o r a s i n g l e a c q u i s i t i o n indexed by the i n t segment

81

82 double ∗ getOf f s e tArray (void) ; //Get a vec to r o f the ho r i z on t a l

o f f s e t s a s s o c i a t ed with each t r i g g e r

83 double ∗ getTr iggerArray (void) ; //Get a vec to r o f t r i g g e r t imes (in

seconds , r e l a t i v e to f i r s t t r i g g e r)

84

85 std : : s t r i n g getInstrumentName (void) ; //Returns the name o f the

o s c i l l o s c o p e , i f i t e x i s t s

86 std : : s t r i n g getTemplateName (void) ; //Returns the name o f the data

template , i f i t e x i s t s

87 std : : s t r i n g getTraceLabel (void) ; //Returns the l a b e l f o r the t r a c e

f i l e , i f i t e x i s t s

88 std : : s t r i n g getTimestamp (void) ; //Returns a s t r i n g d e s c r i b i n g when

the f i l e was c rea ted

89 std : : s t r i n g getHeader (void) ; //Returns a s t r i n g d e s c r i b i n g the f i l e

– 44 –

90 std : : s t r i n g getFileName (void) ; //Returns the name o f the f i l e

r ep r e s ent ed by the ob j e c t

91

92 f l o a t getTimeUncertainty (void) ; //Returns the unce r ta in ty in time

measurements (in seconds)

93 f l o a t getMaxSignal (void) ; //Returns the h i ghe s t vo l tage recorded in

the f i l e

94 f l o a t getMinSignal (void) ; //Returns the lowest vo l t age recorded in

the f i l e

95

96 long getAcqCount (void) ; //Returns the number o f a c q u i s i t i o n s

recorded in the f i l e

97 long getInstrumentNumber (void) ; //Returns a number i d e n t i f y i n g the

o s c i l l o s c o p e

98

99 i n t getPointsPerAcq (void) ; //Returns the number o f vo l tage r ead ings

in each a c qu i s i t i o n

100

101 double ∗ getSpectrum () ; //Returns an array conta in ing the value o f

ADC counts f o r each pu l s e in the f i l e

102 double ∗ getSpectrumTime () ; //Returns an array conta in ing the time

at which each pu l s e in the spectrum was seen (s t a r t i n g from the

f i r s t t r i g g e r in the f i l e)

103

104 std : : vector<TimeStamp∗> getSpectrumTimestamps () ;

105

106 i n t getSpectrumSize () ; //Returns the number o f po in t s in the

spectrum

107

108 void setMaxBasel ineSigma (double l e v e l) ; // Set the maximum al lowed

standard dev i a t i on in the ba s e l i n e be f o r e an a c qu i s i t i o n i s r e j e c t e d

109 void setIntegrat ionWindow (double o f f s e t , double width = 150 .) ;

110

– 45 –

111 std : : vector<l e c r oyH i t∗> y i e l dH i t s () ;

112

113 } ;

114

115

116 LeCroyData : : LeCroyData (std : : s t r i n g f i leName) {

117

118 i f (! i sTrace (f i leName)) {throw "Given f i l ename i s not a LeCroy binary

t r a c e f i l e ! " ; }

119 th i s−>fi leName = fi leName ;

120

121 //open the f i l e at the l a s t byte to determine the f i l e s i z e in bytes

122 std : : i f s t r e am ta rg e t (f i leName , std : : i o s : : in | s td : : i o s : : b inary | std : : i o s

: : ate) ;

123 f i l e S i z e = ta rg e t . t e l l g () ;

124

125 // I d e n t i f y the byte corre spond ing to the s t a r t o f "WAVEDESC"

126 char memblock [5 0] ;

127 t a r g e t . seekg (0) ;

128 t a r g e t . read (memblock , 50) ;

129 std : : s t r i n g b l o ckSt r ing (memblock) ;

130 wavedescIndex = b lockSt r i ng . f i nd ("WAVEDESC") ;

131

132 // read the f i l e i n to memory

133 t a r g e t . seekg (0) ;

134 f i l e B u f f e r = new char [f i l e S i z e] ;

135 t a r g e t . read (f i l e B u f f e r , f i l e S i z e) ;

136 t a r g e t . c l o s e () ;

137

138 // read in each data f i e l d from i t s known byte l o c a t i o n

139 templateName = get16CharStr ing (wavedescIndex + 16) ;

140 commType = getShort (wavedescIndex + 32) ;

141 commOrder = getShort (wavedescIndex + 34) ;

– 46 –

142 waveDescr iptorS ize = getLong (wavedescIndex + 36) ;

143 userTextS ize = getLong (wavedescIndex + 40) ;

144 t r i g t imeArrayS i z e = getLong (wavedescIndex + 48) ;

145 waveArraySize = getLong (wavedescIndex + 60) ;

146 instrumentName = get16CharStr ing (wavedescIndex + 76) ;

147 instrumentNumber = getLong (wavedescIndex + 92) ;

148 t raceLabe l = get16CharStr ing (wavedescIndex + 96) ;

149 f i r s tVa l i dPo i n t = getLong (wavedescIndex + 124) ;

150 l a s tVa l i dPo in t = getLong (wavedescIndex + 128) ;

151 spar s ingFacto r = getLong (wavedescIndex + 136) ;

152 segmentIndex = getLong (wavedescIndex + 140) ;

153 ve r t i c a lGa in = getF loat (wavedescIndex + 156) ;

154 v e r t i c a lO f f s e t = getF loat (wavedescIndex + 160) ;

155 maxValue = getF loat (wavedescIndex + 164) ;

156 minValue = getF loat (wavedescIndex + 168) ;

157 nominalBits = getShort (wavedescIndex + 172) ;

158 ho r i z I n t e r v a l = getF loat (wavedescIndex + 176) ;

159 vertUnit = getText (wavedescIndex + 196 , 48) ;

160 hor i zUni t = getText (wavedescIndex + 244 , 48) ;

161 hor i zUnce r ta in ty = getF loat (wavedescIndex + 292) ;

162 timestamp = makeTimestamp(wavedescIndex + 296) ;

163

164 subArrayCount = tr i g t imeArrayS i z e /(2∗ s i z e o f (double)) ;

165

166 userText = getText (wavedescIndex +(i n t) waveDescr iptorS ize ,

use rTextS ize) ;

167

168 //Loads the TRIGTIME_ARRAY block in to a pa i r o f double [] s

169 t r ig t imeArray = new double [subArrayCount] ;

170 hor i zOf f s e tAr ray = new double [subArrayCount] ;

171 f o r (i n t i = 0 ; i<subArrayCount ; i++){

172 t r ig t imeArray [i] = 1e9 ∗(getDouble (wavedescIndex + (i n t)

waveDescr iptorS ize + (i n t) userTextS ize + 2∗ i ∗ s i z e o f (double))) ;

– 47 –

173 hor i zOf f s e tAr ray [i] = 1e9 ∗(getDouble (wavedescIndex + (i n t)

waveDescr iptorS ize + (i n t) userTextS ize + (2∗ i +1)∗ s i z e o f (double))) ;

174 }

175

176 i f (commType == 0) { // I f the WAVE_ARRAY i s expres sed in bytes . . .

177 waveArray = new double [waveArraySize] ;

178 f o r (i n t i = 0 ; i<waveArraySize ; i++){ //Load the waveArray us ing

bytes

179 waveArray [i] = 1e3 ∗ ((double) v e r t i c a lGa in ∗getByte (wavedescIndex +

waveDescr iptorS ize + userTextS ize + t r i g t imeArrayS i z e + i) − (double

) v e r t i c a lO f f s e t) ;

180 }

181 }

182 e l s e {

183 waveArray = new double [waveArraySize / 2] ;

184 f o r (i n t i = 0 ; i<waveArraySize /2 ; i++){ // I f the WAVE_ARRAY i s

expres sed in words , load the waveArray us ing words

185 waveArray [i] = 1e3 ∗ ((double) v e r t i c a lGa in ∗ getShort (wavedescIndex +

waveDescr iptorS ize + userTextS ize + t r i g t imeArrayS i z e + 2∗ i) − (

double) v e r t i c a lO f f s e t) ;

186 }

187 }

188

189 // Ca lcu la te the number o f po in t s in each t r i g g e r e d a c qu i s i t i o n

190 pointsPerAcq = waveArraySize /(subArrayCount ∗(commType+1)) ;

191

192 // Ca lcu la te the time in seconds o f each data po int in the waveArray

and append i t to the timeArray

193 timeArray = new double [subArrayCount∗pointsPerAcq] ;

194 f o r (i n t i = 0 ; i<subArrayCount ; i++){

195 f o r (i n t j = 0 ; j<pointsPerAcq ; j++){

196 timeArray [j + i ∗pointsPerAcq] = (hor i zOf f s e tAr ray [i] +

tr ig t imeArray [i] + 1e9∗ j ∗ ho r i z I n t e r v a l) ;

– 48 –

197 }

198

199 }

200

201 dx = timeArray [1] − timeArray [0] ; // In t e g r a t i on t imestep

202 pointsPerWindow = (i n t) (window/dx) ;

203

204 //Clean up

205 de l e t e f i l e B u f f e r ;

206

207 ba s e l i n eSub t r a c t i on () ;

208 buildSpectrum () ;

209 }

210

211

212 LeCroyData : : ~ LeCroyData () {

213 //Clean up ar rays when we d e l e t e the ob j e c t :

214 de l e t e [] waveArray ; d e l e t e [] timeArray ; d e l e t e [] ho r i zOf f s e tAr ray ;

d e l e t e [] t r i g t imeArray ;

215 f o r (double ∗ a : goodAcqs) { d e l e t e [] a ; }

216 goodAcqs . c l e a r () ;

217 }

218

219

220 double ∗ LeCroyData : : getWaveArray (void) { re turn waveArray ; }

221

222

223 double ∗ LeCroyData : : getTimeArray (void) { re turn timeArray ; }

224

225

226 double ∗ LeCroyData : : ge tOf f s e tArray (void) { re turn hor i zOf f s e tAr ray ; }

227

228

– 49 –

229 long LeCroyData : : getAcqCount (void) { re turn subArrayCount ; }

230

231

232 i n t LeCroyData : : getPointsPerAcq (void) { re turn pointsPerAcq ; }

233

234

235 std : : s t r i n g LeCroyData : : getTimestamp (void) { re turn timestamp ; }

236

237

238 std : : s t r i n g LeCroyData : : getTraceLabel (void) { re turn t raceLabe l ; }

239

240

241 std : : s t r i n g LeCroyData : : getInstrumentName (void) { re turn instrumentName ; }

242

243

244 long LeCroyData : : getInstrumentNumber (void) { re turn instrumentNumber ; }

245

246

247 double ∗ LeCroyData : : getTr iggerArray (void) { re turn tr ig t imeArray ; }

248

249

250 f l o a t LeCroyData : : getTimeUncertainty (void) { re turn hor i zUnce r ta in ty ; }

251

252

253 f l o a t LeCroyData : : getMaxSignal (void) { re turn maxValue ; }

254

255

256 f l o a t LeCroyData : : getMinSignal (void) { re turn minValue ; }

257

258

259 std : : s t r i n g LeCroyData : : getFileName () { re turn f i leName ; }

260

261

– 50 –

262 double ∗ LeCroyData : : getAcqWave (i n t segment) {

263 //Getter method f o r an i nd i v i dua l waveform acqu i s i t i o n , indexed by

the i n t segment

264 double ∗waveform = new double [pointsPerAcq] ;

265 f o r (i n t i = 0 ; i<pointsPerAcq ; i++){ //FOr each po int in the

a c q u i s i t i o n . . .

266 waveform [i] = waveArray [segment∗pointsPerAcq + i] ; //Fetch the

po int from the s p e c i f i e d segment

267 }

268 re turn waveform ;

269 }

270

271

272 double ∗ LeCroyData : : getAcqTime (i n t segment) {

273 //Getter method f o r the t iming data f o r the i nd i v i dua l waveform

a c qu i s i t i o n indexed by the i n t segment

274 double ∗ segmentTimes = new double [pointsPerAcq] ;

275 f o r (i n t i = 0 ; i<pointsPerAcq ; i++){ //For each po int in the

a qu i s i t i o n . . .

276 segmentTimes [i] = timeArray [segment∗pointsPerAcq + i]− t r ig t imeArray

[segment] ; //Fetch the po int from the s p e c i f i e d segment

277 }

278 re turn segmentTimes ;

279 }

280

281

282 std : : s t r i n g LeCroyData : : getText (i n t byteLocation , long byteLength) {

283 //Converts byteLength bytes from the f i l e B u f f e r , s t a r t i n g from

byteLocation , i n to a s t r i n g

284 std : : o s t r ing s t r eam text ;

285 f o r (i n t n = n ; n<byteLength ; n++){ //For each charac t e r in the

s p e c i f i e d r eg i on o f the f i l e B u f f e r . . .

– 51 –

286 text<<f i l e B u f f e r [byteLocat ion+n] ; //Append the charac t e r to the

s t r i n g

287 }

288 re turn text . s t r () ;

289 }

290

291

292 std : : s t r i n g LeCroyData : : get16CharStr ing (i n t byteLocat ion) {

293 //Converts bytes from the f i l e B u f f e r , s t a r t i n g from byteLocation ,

i n to a 16− cha rac t e r s t r i n g

294 re turn getText (byteLocation , 16) ;

295 }

296

297

298 std : : s t r i n g LeCroyData : : makeTimestamp(i n t byteLocat ion) {

299 //Constructs a s t r i n g d e s c r i b i n g the date and time at which the f i l e

was c reated

300 // as s p e c i f i e d in the LeCroy X−Stream manual

301 std : : o s t r ing s t r eam stamp ;

302

303 //Get t iming i n f o

304 double s ec = getDouble (byteLocat ion) ;

305 s igned char min = getByte (byteLocat ion + 8) ;

306 s igned char hrs = getByte (byteLocat ion + 9) ;

307 s igned char day = getByte (byteLocat ion + 10) ;

308 s igned char mon = getByte (byteLocat ion + 11) ;

309 shor t yrs = getShort (byteLocat ion + 12) ;

310

311 i n t i n t s e c = (i n t) s ec ;

312

313 double m i l l i s = (sec−i n t s e c) ∗1 e3 ;

314 i n t intms = (i n t) m i l l i s ;

315

– 52 –

316 double micros = (m i l l i s − intms) ∗1 e3 ;

317 i n t intmus = (i n t) micros ;

318

319 double nanos = (micros − intmus) ∗1 e3 ;

320 i n t i n tn s = (i n t) nanos ;

321

322 //Construct the s t r i n g

323 stamp<<yrs<<"/"<<(in t)mon<<"/"<<(in t) day<<"/"<<(in t) hrs<<"/"<<(in t)

min<<"/"<<int s e c <<"/"<<intms<<"/"<<intmus<<"/"<<in tn s ;

324

325 re turn stamp . s t r () ;

326 }

327

328

329 std : : s t r i n g LeCroyData : : getHeader (void) {

330 //Returns a s t r i n g d e s c r i b i n g the f i l e

331

332 std : : o s t r ing s t r eam header ;

333

334 header<<" Instrument name : \ t "<<instrumentName<<std : : endl ;

335 header<<" Instrument number : \ t "<<instrumentNumber<<std : : endl ;

336 header<<" F i l e template : \ t "<<templateName<<std : : endl ;

337 header<<"Timestamp : \ t "<<timestamp<<std : : endl ;

338 header<<"User t ext : \ t "<<userText<<std : : endl ;

339 header<<"Label : \ t "<<traceLabe l<<std : : endl ;

340 header<<"Number o f a c q u i s i t i o n s : \ t "<<subArrayCount<<std : : endl ;

341 header<<"Points per a c q u i s i t i o n : \ t "<<pointsPerAcq<<std : : endl ;

342 header<<" S igna l extrema : \ t "<<(ve r t i c a lGa in ∗minValue−v e r t i c a lO f f s e t)

<<" , "<<(ve r t i c a lGa in ∗maxValue−v e r t i c a lO f f s e t)<<std : : endl ;

343 header<<"Ve r t i c a l un i t : \ t "<<vertUnit<<std : : endl ;

344 header<<"Timing unce r ta in ty : \ t "<<hor izUncerta inty<<std : : endl ;

345 header<<"Hor i zonta l un i t : \ t "<<hor izUnit<<std : : endl ;

346 double a , b ;

– 53 –

347 a = timeArray [0] ;

348 b = timeArray [pointsPerAcq∗subArrayCount −1] ;

349 header<<" F i r s t and l a s t t imepo int s : \ t "<<a<<" , "<<b<<" (span : "<<(b−a

)<<hor izUnit<<") "<<std : : endl ;

350 header<<"Nominal ADC b i t s : \ t "<<nominalBits<<std : : endl ;

351 re turn header . s t r () ;

352

353 }

354

355

356 bool LeCroyData : : i sTrace (std : : s t r i n g f i leName) {

357 // I d e n t i f i e s whether a f i l e name r ep r e s en t s a LeCroy t r a c e f i l e based

on the f i l e ex t ens i on

358 std : : s t r i n g la s tFour = fi leName . subs t r (f i leName . l ength () − 4) ;

359 i f (l a s tFour == " . t r c ") { re turn true ; }

360 re turn f a l s e ;

361 }

362

363

364 long LeCroyData : : getLong (i n t byteLocat ion) {

365 //Get the vlaue o f a long from byteLocat ion in the f i l e B u f f e r

366 long l ;

367 char bytes [s i z e o f l] ;

368 f o r (i n t n = 0 ; n<(s i z e o f l) ; n++){

369 bytes [n] = f i l e B u f f e r [n+byteLocat ion] ; // S e l e c t bytes to form the

long

370 }

371 std : : memcpy(&l , &bytes , s i z e o f l) ; //Copy the b i t pattern in to the

long

372 re turn l ;

373 }

374

375

– 54 –

376 i n t LeCroyData : : g e t In t (i n t byteLocat ion) {

377 //Get the value o f an i n t from byteLocat ion in the f i l e B u f f e r

378 i n t i ;

379 char bytes [s i z e o f i] ;

380 f o r (i n t n = 0 ; n<(s i z e o f i) ; n++){

381 bytes [n] = f i l e B u f f e r [n+byteLocat ion] ; // S e l e c t bytes to form the

i n t

382 }

383 std : : memcpy(&i , &bytes , s i z e o f i) ; //Copy the b i t pattern in to the

i n t

384 re turn i ;

385 }

386

387

388 shor t LeCroyData : : getShort (i n t byteLocat ion) {

389 //Get the value o f a f l o a t from byteLocat ion in the f i l e B u f f e r

390 shor t s ;

391 char bytes [s i z e o f s] ;

392 f o r (i n t n = 0 ; n<(s i z e o f s) ; n++){

393 bytes [n] = f i l e B u f f e r [n+byteLocat ion] ; // S e l e c t bytes to form the

shor t

394 }

395 std : : memcpy(&s , &bytes , s i z e o f s) ; //Copy the b i t pattern in to the

shor t

396 re turn s ;

397 }

398

399

400 f l o a t LeCroyData : : ge tF loat (i n t byteLocat ion) {

401 //Get the value o f a f l o a t from byteLocat ion in the f i l e B u f f e r

402 f l o a t f ;

403 char bytes [s i z e o f f] ;

404 f o r (i n t n = 0 ; n<(s i z e o f f) ; n++){

– 55 –

405 bytes [n] = f i l e B u f f e r [n+byteLocat ion] ; // S e l e c t bytes to form the

f l o a t

406 }

407 std : : memcpy(&f , &bytes , s i z e o f f) ; //Copy the b i t pattern in to the

f l o a t

408 re turn f ;

409 }

410

411

412 double LeCroyData : : getDouble (i n t byteLocat ion) {

413 //Get the value o f a double from byteLocat ion in the f i l e B u f f e r

414 double d ;

415 char bytes [s i z e o f d] ;

416 f o r (i n t n = 0 ; n<(s i z e o f d) ; n++){

417 bytes [n] = f i l e B u f f e r [n+byteLocat ion] ; // S e l e c t bytes to form the

double

418 }

419 std : : memcpy(&d , &bytes , s i z e o f d) ; //Copy the b i t pattern in to the

double

420 re turn d ;

421 }

422

423

424 s igned char LeCroyData : : getByte (i n t byteLocat ion) {

425 //Get the value o f a s igned char from byteLocat ion in the f i l e B u f f e r

426 s igned char b = f i l e B u f f e r [byteLocat ion] ;

427 re turn b ;

428 }

429

430

431 double LeCroyData : : meanEstimateBasel ine (double ∗ y , double ∗ timeArray ,

double s i gL im i t) {

– 56 –

432 //Uses the vo l tage recorded up to the t r i g g e r event to es t imate the

ba s e l i n e

433 // Labels the value f o r d i s c a rd i ng i f the standard dev i a t i on o f the

vo l tage in the pre−t r i g g e r r eg i on i s h igher than s i gL im i t

434

435 i n t s t a r tPo i n t s = 0 ;

436 whi le (timeArray [s t a r tPo i n t s +1] < 0) { s t a r tPo i n t s++;} // I d e n t i f y the

number o f po in t s be f o r e the t r i g g e r

437

438 s t a r tPo i n t s = (s t a r tPo i n t s ∗9) /10 ; //To avoid the t r i g g e r i n g s i g n a l

skewing the value o f the ba s e l i n e

439

440 double s ta r tReg ion [s t a r tPo i n t s] ;

441 f o r (i n t i = 0 ; i<s t a r tPo i n t s ; i++){ s tar tReg ion [i] = y [i] ; } // Co l l e c t

the vo l tage va lue s be f o r e the t r i g g e r in an array . . .

442 double baseLine = TMath : : Mean<double >(s ta r tPo in t s , s ta r tReg ion) ; //

And eva luate the mean

443

444 i f (TMath : : StdDev<double >(s ta r tPo in t s , s ta r tReg ion) > s i gL im i t) { re turn

−9999.;} // I f standard dev i a t i on too high , re turn something

obv ious ly wrong

445 e l s e { re turn baseLine ; } //Otherwise , the mean i s the ba s e l i n e

446 }

447

448

449 void LeCroyData : : b a s e l i n eSub t r a c t i on () {

450

451 //Reset the record o f "good" a c q u i s i t i o n s :

452 f o r (double ∗ a : goodAcqs) { d e l e t e [] a ; }

453 goodAcqs . c l e a r () ;

454 goodAcqNums . c l e a r () ;

455

456 f o r (i n t i = 0 ; i<subArrayCount ; i++){ //For each a c qu i s i t i o n

– 57 –

457 double ∗ data = getAcqWave (i) ;

458 double b a s e l i n e = meanEstimateBasel ine (data , getAcqTime (i) ,

maxBaselineSigma) ; // Ca lcu la t e the ba s e l i n e f o r the a cqu i s i t on

459 i f (b a s e l i n e != −9999.){ // Bas e l i n e s with standard dev i a t i on too

high are tagged by t h i s va lue

460 //Make a record o f the "good" a c q u i s i t i o n s :

461 i n t windowStart = (i n t) ((o f f s e t − hor i zOf f s e tAr ray [i]) /dx) ;

462 // std : : cout . f l u s h ()<<"In t e g r a t i on s t a r t index in a c q u i s i t i o n "<<i

<<": "<<windowStart<<std : : endl ;

463 // std : : cout . f l u s h ()<<"Bounds with in a c q u i s i t i o n : "<<((windowStart

+ pointsPerWindow <= pointsPerAcq)&&(windowStart >= 0))<<std : : endl ;

464 goodAcqs . push_back (new double [pointsPerWindow]) ;

465 goodAcqNums . push_back (i) ;

466 f o r (i n t j = 0 ; j<pointsPerWindow ; j++){

467 goodAcqs [goodAcqs . s i z e () −1][j] = ba s e l i n e − data [j+windowStart

] ; // Store a copy o f the a c q u i s i t i o n a f t e r b a s e l i n e sub t ra c t i on

468 }

469 }

470 }

471 }

472

473

474 double LeCroyData : : compos i t e In teg ra t e (double ∗ yPoints , long nPoints ,

double xStep) {

475

476 //An n−po int composite Newton−Cotes formula , as found on Wolfram

Mathworld

477 //Pretty good f o r nPoints > 8

478 double sum = 0 ;

479

480 f o r (long i = 0 ; i<nPoints ; i++){

481 i f (i == 0 | | i == nPoints −1){sum += 17∗ yPoints [i] / 4 8 . ; }

482 e l s e i f (i == 1 | | i == nPoints −2){sum += 59∗ yPoints [i] / 4 8 . ; }

– 58 –

483 e l s e i f (i == 2 | | i == nPoints −3){sum += 43∗ yPoints [i] / 4 8 . ; }

484 e l s e i f (i == 3 | | i == nPoints −4){sum += 49∗ yPoints [i] / 4 8 . ; }

485 e l s e {sum+=yPoints [i] ; }

486 }

487

488 re turn sum∗xStep ;

489 }

490

491

492 void LeCroyData : : bui ldSpectrum () {

493

494 spectrumADCCounts . c l e a r () ; // Clear ing any old spectrum data to bu i ld

the new in i t s p lace

495 spectrumTime . c l e a r () ;

496

497 spectrumSize = goodAcqs . s i z e () ; //Number o f po in t s in the spectrum

498

499 f o r (i n t i = 0 ; i<spectrumSize ; i++){ // Ca lcu la te a po int in the

spectrum from every "good" a cqu i s t i on

500 spectrumADCCounts . push_back (compos i t e In teg ra t e (goodAcqs [i] ,

pointsPerWindow , dx)) ;

501 spectrumTime . push_back (t r ig t imeArray [goodAcqNums [i]]) ;

502 }

503 }

504

505

506 void LeCroyData : : setMaxBasel ineSigma (double l e v e l) {

507 i f (maxBaselineSigma != l e v e l) { // I f a change i s r eques ted

508 maxBaselineSigma = l e v e l ; //Update the th r e sho ld standard dev i a t i on

f o r b a s e l i n e c a l c u l a t i o n

509 ba s e l i n eSub t r a c t i on () ; //And r e c a l c u l a t e the spectrum

510 buildSpectrum () ;

511 }

– 59 –

512 }

513

514

515 void LeCroyData : : setIntegrat ionWindow (double o f f s e t , double l ength) {

516

517 th i s−>o f f s e t = o f f s e t ; // Set the l o c a t i o n and length o f the

i n t e g r a t i o n window

518 window = length ;

519

520 pointsPerWindow = (i n t) (window/dx) ; // Ca l cu la t e the number o f data

po in t s in the window

521

522 ba s e l i n eSub t r a c t i on () ; // Reca l cu l a t e the spectrum

523 buildSpectrum () ;

524 }

525

526

527 double ∗ LeCroyData : : getSpectrum () { return spectrumADCCounts . data () ; }

528

529

530 double ∗ LeCroyData : : getSpectrumTime () { re turn spectrumTime . data () ; }

531

532

533 std : : vector<TimeStamp∗> LeCroyData : : getSpectrumTimestamps () {

534 // Ca lcu la te nanosecond−p r e c i s i o n TimeStamps f o r each po int in the

c a l c u l a t ed spectrum

535

536 std : : vector<TimeStamp∗> stamps ;

537 TimeStamp∗ t s ;

538

539 f o r (double t : spectrumTime) {

540 t s = new TimeStamp(timestamp) ;

541 ts−>addNanos (t) ;

– 60 –

542 stamps . push_back (t s) ;

543 }

544

545 re turn stamps ;

546 }

547

548

549 std : : vector<l e c r oyH i t∗> LeCroyData : : y i e l dH i t s () {

550 //Returns a vector<> of ob j e c t s more e a s i l y handled than LeCroyData

ob j e c t s f o r the p ro c e s s i ng

551 // o f data ac ro s s many f i l e s .

552 std : : vector<TimeStamp∗> t = getSpectrumTimestamps () ;

553 std : : vector<l e c r oyH i t∗> re t ;

554

555 f o r (i n t i = 0 ; i < spectrumADCCounts . s i z e () ; i++){

556 r e t . push_back (new l e c r oyH i t (spectrumADCCounts [i] , t [i])) ;

557 }

558

559 re turn r e t ;

560 }

561

562 i n t LeCroyData : : getSpectrumSize () { re turn spectrumSize ; }

Acknowledgments

Thank you to my supervisors, in particular Simon, for providing me with two terms of

engaging and meaningful work and valued insight. Thank you also to the UCL PBT

group for your advice, your patience, and the welcoming atmosphere. Thank you to

Tony Price for the experience I was able to have at the University of Birmingham

and for the exciting collaboration the PRaVDA team brought to my project. Finally,

thank you to Jordan Silverman, Andy Morris, and Leya George for their unfaltering

– 61 –

moral support.

– 62 –

	Introduction
	Cancer and Cancer Treatment
	Radiotherapy
	X-Ray Radiotherapy
	Proton Radiotherapy

	Difficulties Faced by Proton Radiotherapy
	Treatment Plan Verification
	Goals for the Project
	The UCL Single-Module Calorimeter Prototype
	The PRaVDA Tracker

	Developing Analysis Tools
	Goals for the Analysis Tools
	The LeCroyData Class
	Approaches to Calculating ADC Spectra

	Data Collection with a PRaVDA Tracker Module
	Goals for the Experiment
	Experimental Setup and Procedure
	Analysis and Results

	Summary and Conclusions
	Directions for Further Work

