

Physiological	Electricity on the Body	Heat	
Oxygen evolution	$2H_2O \rightarrow O_2^{\uparrow} + 4H^+ + 4e^-$ Acid		
Hydrogen evolution	$2H_2O + 2e^- \rightarrow H_2^+ + 2OH^-$ Alkali		
 Caused by direct current (DC) Regulations usually limit DC to mA Electrodes are sometimes not actually in contact with the skin 			
LIFEGUARD ELECTRODES ELECTRODE GEL1 SKIN		H	
PALS™Platinum Blue			

van der Graaf generator

Charging to high voltage is not painful and can be safe. The low resistance within the body (~100 Ω) means that the body is at a common potential,

 X_{c}

C and R in series (voltage source) - more

How to do this quickly

You know R.

1. Given frequency and C, calculate the reactance X

R and X are in series but are in quadrature (90° phase difference)

. .

2. Add them as vectors to get *impedance* Z (magnitude and phase) ,

$$|Z| = \sqrt{R^2 + X^2}$$
 $\langle Z = tan^{-1}\left(\frac{X}{R}\right)$

- 3. Magnitude of current is then applied voltage divided by |Z|
- 4. Phase of current is equal to phase of impedance but of opposite sign.

Try this

If a 1 μ F capacitor, a 1H inductor and a 5k Ω resistor are in series and connected across a 240volt 50Hz source, what is the magnitude of the current that flows?

X_L =2. π .50.1= 314 Ω	X=3183-314 = 2869Ω
$X_{C}=1/(2.\pi.50.10^{6})=3183\Omega$	

 $|Z| = \sqrt{(5000^2 + 2869^2)} = 5760\Omega$

|current|=240/5760 = 41.7mA