MPHY3892 Radiobiology Lecture 4

Effects of Radiation on Normal Tissues

Effect of Cell Death on Tissue

- Reproductive cell death is random; each cell has a finite probability of being killed by radiation
- For a given dose, a certain proportion of cells will be killed. This proportion is never zero
- A macroscopic lesion is not observed in tissue until a significant proportion of cells are killed above which the effect becomes noticeable ⇒ THRESHOLD DOSE
- Threshold dose varies greatly from one tissue to another
- Little variation in threshold dose with mammalian species

Tissue Damage

- Appearance of effect at tissue level depends on mitotic rate
- Timescale:
 - hours for intestinal epithelium and bone marrow
 - days for skin and mucosa
 - months for lung and kidney

In addition to reproductive cell death other phenomena play a role in tissue damage:

- Interdependence of cells
 - cells do not react to radiation as autonomous units
 - are linked to adjacent cells by intercellular junctions
 - cells receive and emit short- and long-range micro-environmental signals (e.g. growth factors and inhibitors of cell division)
 - thus lesions in irradiated cells can elicit effects in neighbouring layers of non-irradiated cells – this is called a <u>"bystander effect"</u>
- Injury to cell membrane

e.g. acute erythema (redness of skin) is associated with injury to cell membrane of blood vessels

Risk of Tissue Damage

Risk: $R = 1 - e^{-H}$

where hazard function
$$H = \ln 2 \cdot \left(\frac{D}{D_{50}}\right)^{v}$$

 D_{50} = dose at which effect is observed in 50% of population

(e.g. LD₅₀ - 50% lethal dose for lethal effects)

- D radiation dose
- V shape factor indicating sharpness of rise in response above threshold dose

Threshold dose T is proposed as the dose that yields

a risk of 1%

Deterministic Dose-Response Curves

Symptom	Organ	Threshold Dose	Shape
Mortality		• T (Gy)	Factor V
Bone Marrow Syndrome GI Syndrome	bone marrow	1.5	6
internal	small intestine	9.8	10
external	colon	23	10
Embryonic	fetus:		
•	1-18 days	0.12	2
	18-150 da	ys 0.37	3
	150-270 da	avs 1.5	6
Morbidity		<i>y</i>	-
Prodromal			
vomiting	abdomen	0.49	3
diarrhoea	abdomen	0.55	2.5
Lung Fibrosis	lung	2.7	5
Skin Burns	skin	6	5
Hypothyroidism	thyroid	2.3	1.3
Thyroiditis	thyroid	140	2
Cataracts	eye lens	1.3	5
Suppression of Ovulation	ovaries	0.85	3
Suppression of Sperm Co	unt testes	0.46	_ 10 _

Fetal Radiation Risk

- Radiation risks are most significant during organogenesis and in the early fetal period, somewhat less in the 2nd trimester, and least in the 3rd trimester
- Malformations have a threshold of 100-200 mGy or higher and are typically associated with central nervous system problems
- Termination of pregnancy at fetal doses of less than 100 mGy is NOT justified based upon radiation risk

Less

Mortality Following Whole Body Irradiation

- LD₅₀ 50% Lethal Dose
- LD₅₀ = 4.5 Gy for young, healthy humans at 60 days after single totalbody exposure to γ -rays, without medical intervention
- 50% Lethal Dose LD₅₀ can be almost doubled by supportive treatment, nursing and antibiotics

Effect of Dose over a Period of Time

Mortality Following Whole Body Irradiation: Effect of LET

Cell Categories and Tissue Models

- Cell Categories in most of the tissues:
 - Stem cells
 - Differentiated cells
 - Maturating cells
- Two tissue models:
 - Hierarchical model
 - Flexible model

Cell Categories: Stem Cells

- Divide large number of times
- Produce identical stem cells and cells which will differentiate
- Proliferation capacity of stem cells remains constant for a given organism during its life time, but the number of mitoses for each stem cell is limited (to about 60)
- Most stem cells are in G₀ phase (time out of cycle) at any given time but can rapidly enter into cycle after stimulation
- A <u>clonogenic cell</u> is a stem cell capable of generating a colony of at least 100 cells
- Mean lethal dose for stem cells D_o = 1Gy (but could be as low as 0.1Gy for certain stem cells)

Cell Categories: Differentiated Cells

- functional cells
- incapable of division
- all cells of a given type will have a similar lifespan (e.g. 120 days for red blood cells)
- large variation of lifespan between different types of cells
- very radio-resistant
- cells which are differentiated but capable of proliferation when stimulated (e.g. hepatocytes in liver) have lower radiosensitivity (D_0 = several Gy) because they seldom divide 12

Cell Categories: Maturating Cells

- cells in the process of maturation from stem cells to differentiated cells
- multiplying whilst completing their differentiation
- radiosensitivity of maturating cells is lower than that of stem cells and diminishes as differentiation becomes complete

Hierarchical Tissue Model

- There are 3 cellular compartments in this model : stem cells, maturating cells and differentiated cells
- Damage begins to be expressed after a latent period proportional to lifespan of differentiated cells
- As the dose is increased, the stem cell compartment is progressively depleted
- When almost all the stem cells have been killed by radiation, no more new differentiated cells are formed

Hierarchical Tissue Model

Hierarchical Tissue Model

- Stem cells are killed \Rightarrow the number of cells diminishes steadily at a rate depending on the death of cells by <u>ageing</u>, a rate is the same whenever the dose \Rightarrow the time for damage is independent of dose
- Recovery can depend on dose: <u>at high doses</u> regeneration is accelerated because the stimulus for regeneration is more intense when the cellular depletion is greater
- Surviving maturating cells can contribute initially to increase in production of new cells
- Proliferation of stem cells is required for recovery of the hierarchy 16

Flexible Tissue Model

- There are no compartments and no cellular hierarchy in this model
- The model assumes that after the damage, all cells, including differentiated cells, enter mitosis
- A dead cell is replaced by the division of another cell
- Thus radiation creates non-viable cells. Increase in mitosis will cause an <u>avalanche</u> of non-viable cell death ⇒ rapid expression of damage
- Then the time for damage expression is a function of dose
- Sub-clonogenic cells (having infrequent division) are significant for maintaining cell population for a certain time

Flexible Tissue Model

Tissue in Reality

- Most tissues are more realistically represented by hierarchical/flexible hybrid models
- Most of cell population is sub-clonogenic, with a minority of stem cells
- Two important features of the flexible model remain:
 - accelerating decline of population size with time (avalanche effect)
 - shape of dose-response curve depends on the properties of sub-clonogenic cells
- There is a <u>theoretical possibility of</u> radioprotection by post-irradiation stimulation of stem-cell proliferation

Whole Body Irradiation

Whole-body Dose (Gy)	Main Cause of Death	Timescale of Death
(< 2)	(radiation lifeshortening)	
2 - 10	damage to bone marrow	ך 10 - 30 days
10 - 100	damage to intestinal epithelium	3 - 5 days
> 100	damage to central nervous system	mins - 48 hrs

Death is caused by depletion of the stem cells of a critical self-renewal tissue $\frac{20}{20}$

Data on Acute Radiation Syndrome in Humans

- Experiences in radiation therapy
- Studies of survivors of Hiroshima and Nagasaki in 1945
- Marshallese islanders accidentally exposed to radioactive fallout in 1954
- Victims of <u>reported</u> radiation accidents (403 accidents worldwide during 1944-1999):
 - 19 accidents involving nuclear reactors
 - 303 involving radiation devices (sealed radioactive sources or x-ray machines)
 - 81 involving radioisotopes
 - these 403 accidents resulted in 120 deaths
- Dose levels during accidents are usually poorly known²¹

Cerebrovascular Syndrome (Total Body Dose > 100 Gy)

- Symptoms are associated with pathology to nerve cells and blood vessels of the brain
- Suggested cause of death immediate increase in fluid content of the brain due to radiation induced leakage from small blood vessels resulting in build-up pressure within the skull
- At this dose all organ systems are also damaged
- Cardiovascular damage plays an important role
- In man several deaths of this type have been reported in medical literature, e.g.:
 - in 1964, accident at Uranium-235 recovery plant
 - in 1958, nuclear criticality accident at Los Alamos₂₂ (USA)

Gastro-Intestinal Syndrome (Total Body Dose >10 Gy)

- Damage to cell renewal system of gastro-intestinal tract
- Damage to bone marrow also plays a part
- There is no record of a human surviving a whole-body dose > 10 Gy

Jejunal villi of a hamster

- The normal lining of the intestine is composed of stem cells, differentiated cells and maturating functioning cells
- Cells in the villi are differentiated
- Are sloughed off with use
- Replaced from stem cells in crypt (continuous supply of new cells)

Gastro-Intestinal Syndrome

- Destruction of stem cells in the crypt turns off cell supply
- Radiation has practically no effect on differentiated cells
- Villi rapidly wear down, shorten and shrink
- Crypt mitosis picks up again (after 2-6 hours)
- Abnormal cells die after few divisions so mitosis falls again
- Regenerative wave gets weaker and takes longer as dose is increased
- At death the villi become very clearly flat

Gastro-Intestinal Syndrome

- Before Chernobyl only 1 example in medical literature of a human suffering gastro-intestinal death:
 - in 1946 radiation accident to 32year old man, total body dose 11-20
 Gy. General condition remained good until 6th day after exposure.
 Death on the 9th day
 - Several firefighters at Chernobyl (USSR, 1986). Total body doses from 10 to 16 Gy. Death within 7-10 days after exposure
 - Sarov nuclear accident (1997, Russia) - one experimenter received a total body dose of 45 Gy, mainly from neutrons. Death on the 3rd day

Normal GI mucosa

Irradiated GI mucosa

Bone Marrow Syndrome at Total Body Dose 2 - 10 Gy

- Doses low enough for gastro-intestinal syndrome
- Depletion of the stem cells of circulatory blood cells
- Mitotic and non-mitotic death of bone marrow cells
- Number of mitoses can fall to zero in 1 hour
- Supply of mature red blood cells, white blood cells and clotting platelets diminishes or is cut
- Time when the number of circulating cells in blood reaches the minimum value is delayed for weeks

Bone Marrow Syndrome

- Regeneration will include many abnormal cells
- Dead cells from bone marrow are removed and the space is filled by leaking blood
- Circulating blood cells are not replaced when they die
 - initial gastro-intestinal symptoms will clear up in few days
 - anaemia (low red blood cells and haemaglobin)
 - haemorrhage (vessels damaged and no clotting platelets), infection
- Death unless bone marrow has begun to regenerate in time

Normal bone marrow

Irradiated bone marrow

Bone Marrow Syndrome

- Humans develop signs of Bone Marrow Syndrome and recover from it much slower than most other mammals
- Deaths continue for 60 days
- Peak incidence of death at 10-15 days
- Therapy:
 - antibiotic therapy to fight infection
 - hospital isolation to avoid infection, bleeding and physical trauma
 - bone-marrow transplant from a suitable donor (usually from a close relative) - <u>this can only be useful after whole-body</u> <u>doses of 8 to 10 Gy</u>
- Chernobyl nuclear reactor accident (USSR, 1986):
 - 35 people had severe bone marrow syndrome, 13 of them died
 - of 13 people that received bone-marrow transplant, only 2 survived:
 - bone marrow naturally regenerated in 1 case
 - bone-marrow transplant was successful in another case

28

Case Study: Polonium-210 poisoning (November 2006)

LONDON'S QUALITY NEWSPAPER

theory in

Properties of Polonium-210

• Is an alpha particle emitting radionuclide:

$${}^{0}_{4} Po \longrightarrow {}^{206}_{82} Pb + \alpha$$

- 84 82 2
 Alpha particles have energy of 5.3 MeV. Their range is very short (50 μm). They produce the biological damage.
- Half-life of Po-210 is 138 days

21

- Po-210 can be extracted from uranium-bearing rocks
- Is manufactured by bombarding Bi-209 with neutrons:

$$\begin{array}{cccc} 209 \\ & Bi+n & \longrightarrow \\ 83 \end{array} \begin{array}{c} 210 \\ & Bi & \longrightarrow \\ 83 \end{array} \begin{array}{c} 210 \\ & Bi & \longrightarrow \\ 84 \end{array} \begin{array}{c} 210 \\ & Po +\beta \end{array}$$

- Has high specific activity: 1 GBq = 10µg as chloride (1 Bq is 1 disintegration per second)
- Soluble (as chloride) in aqueous solution
- High uptake in soft tissues: liver; kidney; spleen; red bone marrow (RBM); hair follicles

Cumulative doses to organs after ingestion of Po-210 (assuming 10% absorption to blood)

John Harrison et al., *Journal of Radiation Protection* v. 27 (2007) pp.17-40 ³¹

Dosimetry

- Litvinenko case (November 2006) ingestion of about 2 GBq of Po-210 has been estimated* (assuming 10% absorption to blood)
- Red Bone Marrow:
 - 50% Lethal Dose LD_{50} (3.5 4Gy) is reached 10 days after ingestion of 2GBq of Po-210
 - 100% Lethal Dose LD_{100} (5Gy) is reached 2 weeks after ingestion
 - Is Red Bone Marrow transplant any use?
- 2GBq of Po-210 gives:
 - kidney dose 4Gy/day ($LD_{50} = 6Gy$)
 - liver dose 2Gy/day (LD₅₀ = 8Gy)
- Excretion of ingested Polonium-210 from the patient :
 - in faeces (99%)
 - in urine (0.9%)
 - through skin (0.1%) *John Harrison et al. J. Rad. Prot 27 (2007) 17-40

32