

Introduction to b-Tagging

HEP Postgraduate Lecture Course 21.11.17

Andrew Bell

- » Many interesting physics signatures produce a final-state b-quark:
 - » Top decays ($|V_{tb}| >> |V_{ts}|$), Higgs \rightarrow bb, BSM physics searches, precision standard model measurements etc.
- » Final state b-quark will hadronise and shower
 - » Reconstructed as a jet
 - » What properties can we use to differentiate these jets from others?
- » Truth flavour label assigned in simulation using ΔR matching between hadron and jet:
 - » If b-hadron present, label as "b-jet"
 - » Else if no b-hadron but c-hadron present, label as "c-jet" (c-hadrons have similar properties to b-hadrons)
 - » Else label as a "light-flavour jet"

b-Hadron Properties

- » Final state b-quark fragments (production of hadrons from quarks) to excited b-hadrons:
 - » $B^{*}/B^{**} \sim 87\%$ of the time
- » These decay strongly or electromagnetically into a stable b-hadron (with a few additional particles) (left figure)
- » b-quark fragmentation is quite hard:
 - » ~70% of b-quark energy goes to b-hadron (right figure)
- » b-hadrons typically decay to produce ~5 charged stable decay products
 - » c-hadrons typically decay to produce ~2 charged stable decay products

b-Hadron Lifetimes

- » Lifetime of b-hadron is typically ~1.5 ps
- » Plots below compare decay distances of b-hadrons in a number of commonly used MC generators

- » EvtGen is used throughout ATLAS as MC "afterburner":
 - » Provide updated lifetime and decay information
 - » More realistic modelling and improve the description of the particle decay modes and multiplicities
- » Equivalent plots for c-hadrons in back-up

b-Hadron Lifetimes

» b-hadrons decay semileptonically ~10% of the time (i.e. produces an electron or muon)

- » Plots below compare semileptonic fractions of b-hadrons in a number of commonly used MC generators
- » EvtGen is used throughout ATLAS as MC "afterburner":
 - » Provide updated lifetime and decay information
 - » More realistic modelling and improve the description of the particle decay modes and multiplicities
- » Equivalent plots for c-hadrons in back-up

Jet Properties

- » b-hadrons have a number of useful properties:
 - » Longer lifetimes (~1.5 ps)
 - » b-hadron decays to a c-hadron ($|V_{cb}| >> |V_{ub}|$)
 - » Larger mass (~5 GeV)
 - » High decay product multiplicity
- » 3 "baseline" algorithms designed to target these properties
- » Reconstruction of tracks is essential to b-tagging
 - » Associated to jet using ΔR matching

» $\beta \gamma c \tau \sim 5 \text{ mm} - \text{measurable}!$

» For a 30 GeV b-hadron

Light-flavour Jet Properties

- » In a light-flavour jet, most tracks come directly from quark fragmentation
- » Can sometimes result in a displaced vertex and look like a b-jet:
 - » Interactions with the detector material
 - » Photon conversions
 - » Long-lived particles (K_s/ Λ)
 - » Badly measured tracks

Impact Parameter Algorithms

- » Impact parameters (IP) defined as signed point of closest approach in longitudinal and transverse plane
 - » IP Significance is the IP divided by its uncertainty
 - » IP is signed: positive if crosses jet axis in front of primary vertex (otherwise negative)
- » Construct reference templates (PDFs) for b-, c- and light-flavoured jets
- » Log likelihood ratio of probability for each jet flavour gives best separation (Neyman-Pearson lemma)
 - » Assume each track is uncorrelated
- » IP2D uses just transverse (d₀) IP (less susceptible to pileup)
- » IP3D uses transverse (d $_0$) and longitudinal (z $_0$) IP

Impact Parameter Algorithms

- » IP Significance is the IP divided by its uncertainty
- » IP is signed: positive if crosses jet axis in front of primary vertex (otherwise negative)
- » Construct reference templates (PDFs) for b-, c- and light-flavoured jets
- » Log likelihood ratio of probability for each jet flavour gives best separation (Neyman-Pearson lemma)
 - » Assume each track is uncorrelated
- » IP2D uses just transverse (d_0) IP (less susceptible to pileup)

Probability for jet to

have flavour j

» IP3D uses transverse (d_0) and longitudinal (z_0) IP

Impact Parameter Algorithms

- » Impact parameters (IP) defined as signed point of closest approach in longitudinal and transverse plane
 - » Significance is the IP divided by its uncertainty
 - » IP is signed: positive if crosses jet axis in front of primary vertex (otherwise negative)
- » Construct reference templates (PDFs) for b-, c- and light-flavoured jets
- » Log likelihood ratio of probability for each jet flavour gives best separation (Neyman-Pearson lemma)
 - » Assume each track is uncorrelated
- » IP2D uses just transverse (d₀) IP (less susceptible to pileup)
- » IP3D uses transverse (d $_0$) and longitudinal (z $_0$) IP

Secondary Vertex (SV) Algorithms

- » Secondary vertex algorithms aim to reconstruct the secondary decay point using tracks
- » Firstly, reconstruct all 2-track vertices
- Combine into one secondary vertex (removing tracks which are not consistent with the SV)
- » Many useful properties:
 - » Decay length (significance)
 - » Vertex Mass
 - » Number of tracks etc.

Secondary Vertex (SV) Algorithms

- » Secondary vertex algorithms aim to reconstruct the secondary decay point using tracks
- » Firstly, reconstruct all 2-track vertices
- Combine into one secondary vertex (removing tracks which are not consistent with the SV)
- » Many useful properties:
 - » Decay length (significance)
 - » Vertex Mass
 - » Number of tracks etc.

Decay Chain Reconstruction Algorithms **CL**

- » $|V_{cb}| >> |V_{ub}| \rightarrow$ often produce c-hadron from b-hadron decay
- » Additional tertiary vertex
- » JetFitter algorithm reconstructs all decay vertices (assuming they lie on the same flight path)
- » Can even reconstruct single track vertices
 - » Vertex mass, decay length significance, number of vertices with at least 2 tracks etc.

Combining Taggers: Multivariate Algorithms

- » Three baseline algorithms provide b-jet discrimination → provide a number of weakly correlated variables
- » Combine output of three baseline algorithms using a Boosted Decision Tree (BDT)
 - » Total of 24 input variables
- » Algorithm known as MV2c
- » Train using $t\overline{t}$ events, while controlling the c-/light-flavour jet background
 - » MV2cXX means trained on a sample with XX% c-jets (100-XX% light-flavour jets)
 - » Exposes training to different amounts of each jet type
 - » Need to balance light-flavour and c-jet performance
- » Efficiency defined as:

 $\varepsilon_j = \frac{\text{Number of jets of flavour } j \text{ passing cut}}{\text{Number of jets of flavour } j}$

- » Used to evaluate performance of an algorithm at a set "Working Point" (WP)
- » Rejection is defined as 1/efficiency

Multivariate Algorithms

- » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations
- » Larger area under curve \rightarrow increased performance
- » MV2c10 chosen to balance performance of jet flavours
 - » Current default throughout ATLAS

Multivariate Algorithms

- » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations
- » Larger area under curve \rightarrow increased performance
- » MV2c10 chosen to balance performance of jet flavours
 - » Current default throughout ATLAS

Multivariate Algorithms

- » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations
- » Larger area under curve \rightarrow increased performance
- » MV2c10 chosen to balance performance of jet flavours
 - » Current default throughout ATLAS

Individual Tagger Performance

Differential Performance

- » b-tagging efficiency is dependent on jet and event variables:
 - » Performance shown for 70% WP
 - » Efficiency drops at low p_{T} due to reduced IP resolution
 - » Drops at high p_T due to b-hadron decaying after first ID layer (reduced IP resolution) and tracks becoming more collimated
- » At high $|\eta|$, more material interactions within the ID, reducing IP resolution

Calibrations

- » Up to now, all performance studies/training are from simulation
- » How well do we know the performance in data?
 - » Need to correct for detector and modelling effects
- » Apply scale factors to correct performance in MC to data
 - » Applied to event weight (for each jet)

- » Select data sample pure in one jet flavour
- » Measure efficiency in data for a chosen jet flavour (j)
 - » Efficiency in MC is known from truth information
- » Derive scale factor as a function of jet p_T and $|\eta|$
- » Efficiency measurements conducted at a set working point

tt Calibration

- b-jets tagging efficiency measured in data using di-leptonic $t\bar{t}$ events »
- ~70% pure in b-jets, almost no c-jet contamination »
 - » Extract b-jet efficiency from fit to data
- Dominated by systematic uncertainties from modelling of $t\bar{t}$ background: »
 - » Systematics arising from b-tagging are a key factor in a many analyses
 - » ~2-5% uncertainties over majority of spectrum
 - » Largest experimental systematic uncertainty in $VH(\rightarrow bb)$ analysis
- » Consistent with unity for b-jets, but not always the case!
 - » Light-flavour jets can have SF ~ 2

MV2c10, $\epsilon_{\rm b} = 70\%$

50

100

.2

0.8

0.6

0.4

0.2

0

b-jet efficiency

Source of uncertainty		σ_{μ}
Total		0.39
Statistical		0.24
Systematic		0.31
b-tagging	b-jets	0.09
	c-jets	0.04
	light jets	0.04
	extrapolation	0.01

Future Developments

- » Deep learning algorithms (DL1)
- » Recursive Neural Network (RNN)
 - » Takes into account track IP correlations to improve performance
- » Dedicated c-tagging algorithms (H \rightarrow cc):
 - » Use DL algorithms or 2D cut on MV2c100 and MV2cl100
 - » More limited efficiency than b-tagging (typical WP ~ 25% c-jet efficiency)

- » Inclusion of muon variables:
 - » 10% of b-hadron decays produce a muon

- » b-jet performance note (2017) https://cds.cern.ch/record/2273281
- » b-jet performance note (2016) https://cds.cern.ch/record/2160731
- » b-jet performance note (2015) https://cds.cern.ch/record/2037697
- » b-jet efficiency measurement (2012) https://cds.cern.ch/record/1664335
- » ATLAS Flavour Tagging Public Page https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/FlavourTaggingPublicResultsCollisionData
- » Comparison of MC generator predictions for b- and c- hadrons in the decays of top quarks and the fragmentation of high p_T jets:
 - » https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2014-008/

Back-Up

- » Tracks used for b-tagging are reconstructed using the ATLAS inner detector (ID)
 - » Immersed in a 2 T solenoid magnetic field (essential for track momentum measurement)
 - » Insertable B-Layer (new for Run-2) is the inner-most layer at ~30mm radius (silicon pixels)
 - » Greatly improved track resolution over Run-1
 - » Next layers (radially outwards): pixel layers, semiconductor tracker and transition radiation tracker
- » Tracks of charged particles are reconstructed using hits in the ID
- » Associated to jets using a ΔR (track, jet) matching (jet p_T dependent)

Primary Vertex Reconstruction

- » Colliding bunches contain up to 10 protons
 - » In 2016, up to 40 interactions per bunch crossing
 - » Need to effectively find the primary vertex of the event of interest
- » Reconstruct all vertices using ID tracks (example below has ~25 vertices) and an iterative procedure
 - » Select vertex seed from beamspot and track information
 - » Remove tracks from seed until passes set quality requirement
 - » Use discarded tracks to seed another vertex, and repeat until all tracks associated to a vertex
- » Primary vertex is chosen as the one with highest sum of squared track $\ensuremath{\textbf{p}}_{\ensuremath{\mathsf{T}}}$
 - » Correctly identifies the primary vertex ~99% of the time

b-Hadron Lifetimes

b-Hadron Semileptonic Fractions

0.25

0.2

0.3

0.35

 B_s^0 semileptonic fraction

0.4

0.45

0.05

0.1

0.15

c-Hadron Lifetimes

b-Hadron Semileptonic fractions

