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1. Higgs sector of the Glashow Salam Weinberg model [20 marks]

The kinetic and potential terms relating to the Higgs field in the Standard Model are given by
Lo = Lo sineic—V (CI)T(I)) )

wherein
Lo rimene = (D,®) (DF®) |V (B10) = 1201d 4 A (BTD)”
and
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Inside D,,, B,, is the hypercharge gauge field, Y the hypercharge of the Higgs doublet ®, and ¢’ is

the hypercharge gauge field coupling constant. Furthermore, W, = 7¢W ¢, where W (a = 1,2,3),

are the three W gauge boson fields, and 7® are the Pauli spin matrices divided by two. gy is the

weak coupling constant.

(a) Compute >SS in terms of ®T®, where ¥ here is the 2 x 2 compler matriz

(OF3 -+
Y= ¢ ¢ .
_¢+* ¢0
Hence show that V (<I>T<I>), as given above, can be written as
7 (st Loy [t 1 syt
V(E 2) = Su Tr{z 2} +§/\Tr[2 ) 2} :
[7]

(b) Show that V (ETE), given in (a), is invariant under the transformation ¥ — ¥’ = U XU,
where Uy, and Up are two different local SU (2) transformations (U, g = UTL / )

[7]
(¢) The kinetic part of the Higgs Lagrangian can be written as

Lo rimose = %Tr {(D,@)T (Duz)] .

U is the usual local SU (2), gauge transformation, under which
W, W, =UW,U} - (igw) " 0,UL)U}.
Working in the limit that the hypercharge coupling is zero (¢’ = 0) the covariant derivative is
DY =09, +igwW,X.

For ¢ = 0 show that bﬂE — ULbME, and hence that L4_yneqe 18 invariant under this

transformation.

[6]



2. Nuclear (-decay [20 marks]
You should neglect the positron mass throughout this question.

In the limit that the nucleons may be considered non-relativistic, the amplitude for the -decay of

the 1O oxygen isotope to the *N* nitrogen isotope,
Mo SU N et 0.,

is given by
—iM = —iGpa(p,)7° (1 =7°) v (pe) 2mn)

where G is the Fermi constant, with p. and p, denoting the positron and neutrino (four) momenta

respectively. The nucleon mass is denoted m .
(a) Compute iM*.

[4]

(b) Show that the squared amplitude summed over positron and neutrino spin polarizations re-

duces to

Z \./\/l|2 = QG% (QmN)2 Tr [pwo e’ (1 775)} .

spins

Remember to neglect the positron mass.

7]

(¢) Using the Dirac trace identity
Tr [/pu’yo /pe,YO (1 - ’75)] =8E.E, — 4pe-py

determine ) |/\/l|2 in terms of Gr, my, E., E, and 0., where E, and E, denote the

energies of the positron and neutrino, with 6., labeling the angle between the neutrino and

spins

positron momenta.

[5]
(d) Including the phase space measure and flux factor the differential decay width can be written

1 I
ar = ﬁGzF [1+ cos e, |Pe]” d|pe| dcosbe, E*dE, § (Ey — E. — E,) ,

where |p.| is the magnitude of the positron’s three-momentum and Fj is the energy released

to the lepton pair. Integrate dI" over E,, and cos 6., to obtain the positron spectrum

dr’ G2 2 2
d|ﬁ|:71'7§’|pe‘ (EO_Ee) .

[4]



3. Non-Abelian gauge theory [20 marks]

Unless otherwise stated you should assume the usual summation convention applies: repeated SU (N)

indices are implicitly summed over.

In an SU (V) gauge theory the covariant derivative is given by
D, =0,+igA,, A,=T'A,,

with T" the i’th generator of SU (N) and AZ its corresponding gauge field (i =1,...,N? —1).
Under a local SU (N) transformation U = exp (—iaiTi) the covariant derivative and the gauge

fields change according to

D,—D,=UD,U', and A,— A, =UAU'+ ; @, U)U" .

The generators of SU (N) obey the lie algebra {T“,Tb] = ifoeT°, where fo¢ are the group

structure constants. The field strength tensor is given by

FNV [D#aDV]v

o
9
where g is the coupling constant of the theory.

a Delermine hOW F v Changes under a local Sl/ N lransforma(iom U, in terms Of lhe lnltlal
14
F, v and U

(b) Hence show that the Yang-Mills Lagrangian, Ly = —%Tr [F ., F""], is invariant under local
SU (N) gauge transformations.

4]

(c) Show that the field strength tensor, as written above, can be re-expressed as F',, = TFy,
where F;, is the colour stripped field strength tensor Fyj, = 0, Ay — 0, A}, — g fabe AZAf; .
Hint: make use of the commutator relation for the SU (IV) generators.

[10]



4. Goldstone bosons [20 marks]|

Unless otherwise stated you should assume the usual summation convention applies: repeated in-

dices are implicitly summed over.

Consider a simple scalar field theory, of N real scalar fields ¢;, ¢ = 1,2, ..., N, with Lagrangian

£(66,0u00) = 3 (0400 (°60) =V (i00) .V (8u60) = gudn + A (6:60)°

(a) Given that U is a global SO (V) transformation matrix, determine / write down U;;Uy.

[3]

(b) Compute the effect of the global SO (N) transformation ¢; — ¢; = U;j¢; on ¢;;.
3]

(c) Compute the effect of the global SO (N) transformation ¢; — ¢; = U,;¢; on L.

2]

(d) Write the potential in terms of |¢| = \/¢;¢; and, assuming the parameter 2 is negative, show
the potential minima has extrema located along |¢| = a = \/—Z—Q.

[5]

= (0,0, ...,a), i.e. ¢y ac-

= a, with a as given in part (d). Deter-

(e) Assume the vacuum state of the theory is at (¢1, ¢, ..., ON)]

vacuum

quires a non-zero vacuum expectation value (¢n) .

mine, in terms of Zf\gl #? and x?, only the terms in the potential which are quadratic/bilinear
in ¢1, ¢2,...,¢n—1 and the shifted field y, where ¢ = x + a. What are the masses of ¢q,

¢2,...;dn—1 and x?
[7]



5. Hadron collider cross section [20 marks]|

Throughout this question you should assume that the masses of the colliding hadrons (protons)

and final-state leptons are zero.

Theories of Physics beyond the standard model predict the existence of new heavy Z bosons de-
noted Z’. As with photons and Z bosons, Z’ bosons may be produced by a Drell-Yan mechanism
at hadron colliders, where, at parton level, a same-flavour quark-antiquark pair (¢g) annihilate to

produce a Z’, which subsequently decays to a lepton and an antilepton (ll_): qq— 7' — 1.

Below we denote the colliding hadrons, incident from the 4/ — z-directions, as hg and hg re-
spectively, labelling their corresponding momenta pg and pg. The fraction of hg’s momentum
carried by the colliding quark/antiquark inside it is denoted 7ng in the hadronic centre-of-mass
frame. Similarly, the fraction of hg’s momentum carried by the colliding antiquark/quark inside it
is 7g. The total hadronic centre-of-mass energy squared is denoted S = (pg + p@)Q. The lepton

and antilepton momenta are denoted p; and p; respectively.

(a) Using momentum conservation, ngpg + neps = pi + pj, determine mlgl— in terms of ng, 7o, and

S, where m;; denotes the invariant mass of the lepton-antilepton system.
3]
etermine the rapidity of the lepton pair, y;;, in terms o an , in the hadronic centre-
b) Determine th idity of the lept ir, y;7, in t f ng and 7o, in the hadroni t

of-mass frame.
[3]
(¢) Determine the momentum fractions ng, and ng in terms of myz, y;; and S.
2]

(d) Compute the flux factor, F, in terms of m;;, where F' is in general given by

F= 4\/((0@1’@) . (77@10@))2 - (77@19@)2 (ﬂepe)2~

[3]

(e) The two-body phase space factor for the final-state leptons is
1 .
dLIPS = ——dcos#,
167

where 6 is the polar angle of the final-state lepton in the g centre-of-mass frame. Given that

the matrix element for ¢qg — Z’ — 1, summed over fermion spins, can be written in the form

N o1 A
Z IM|* = 1287 m}; N& {: ( + cos? 9) o+ 50059&%‘13 )

spins

where N¢o = 3 is the number of colours in QCD, and &%’7, &%QB are constants depending only

on the quark and lepton flavours, determine the total partonic cross section, 692 , in terms of
these variables, integrated over all 6.

[5]

(f) Determine the total hq (pg) + he (po) — Z' — 1l hadronic cross section, O he— 2/ 10 11 the

form of an integral over y;; and m;;; you may use the relation dngdng = %dmlgl—dy”-.

4]



6. Decay width of the top quark [20 marks]

Throughout the question you should assume that the b-quark mass is zero and CKM element Vi, = 1.

In the following we denote the ¢, b and W particle momenta respectively as p:, pp, pw -

(a)

Draw the Feynman diagram for the two-body decay of a top quark into a b-quark and a W
boson, labelling the external particles by their momenta p;, py, pw. Take care to label the
flow of fermion number appropriately with an arrow.

2]
The amplitude for the top quark decay to a b-quark and longitudinal W+ boson is
—igw

) - 1
NG e (ow) 3L, G =ae)vus (L= 7s)ulpe)

—iMp = 5

where gy is the weak coupling constant. Show that the complex conjugate of the amplitude

is given by (recall 'y}i = Y0YuY0)

e WGW Sthx ithx _ 1
iMy =" i’ (ow) i B =)y (1= vs)up) -

4]

Summing the amplitude squared over fermion spins (¢ and b) one obtains

i 1
> Mol = ) e o) T | e iy (1)

t,bspins

The longitudinal polarization vector €} (pw) of the W boson, can be written as

1 m3
i (pw) = e <p‘v‘v—pwgb pf) -

Show that -, ;i | Mo|? can be reduced to

S Mo = LI b b b (- n)
0 _Qm%/v bWtW2 Y5)| -

t,b spins

[Hint: ignoring the mass of the b-quark p, p, = p? = 0].
[6]
Using the identity
1
Tr |:/{7b bw e pw (1 —%)] = 2py.pw M}

compute D, ;i |Mo|® in terms of gy, m; and z, where z = mi, /m3.
[5]

The squared matrix element summed over all fermion spins and gauge boson polarizations is

1 1
Z IMPP = 59%,771%;[1—&—3:—23:2}.

spins,pols

Determine the branching fraction of top quark decays to longitudinally polarized W+ bosons

and b-quarks in the limit m; > my .

[3]



