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Preface

The Standard Model is a quantum field theory which incorporates all the
currently known fundamental particles (leptons and quarks) and all forces (other
than gravity), i.e. electromagnetic, weak and strong. It is a gauge theory
where the forces are carried by the spin–1 vector bosons known as the photon
(electromagnetic), W± and Z (weak) and gluons (strong). It describes all the
particle physics we currently know about up to scales of O(10TeV), i.e. the
scales of the largest colliders, LEP, HERA, the Tevatron and the LHC, and
is, in principle, completely consistent until we reach scales of 1019GeV, i.e. the
Planck scale, at which point gravity at the very least must be added. However, it
contains 19 free parameters (mainly masses) and there were indications, though
no real proofs, that some extension/simplification would appear at the the LHC
(Large Hadron Collider), which is now operating at a centre of mass energy near
14TeV. However, nothing has so far shown up.

In very general terms the Standard Model is just an extension of the simplest
useful quantum gauge field theory QED, which contains only the electron and
photon. The structure of the Standard Model has indeed been largely inspired
by the particle content, where the particles are excitations of the quantum
field about the vacuum, and are henceforth intrinsically linked to perturbation
theory. However we can then obtain and test results using the full quantum
field theory beyond perturbation theory, using for example lattice field theory.
Nevertheless, the other sectors of the Standard Model are more complicated
than QED, not just in terms of additional particle content and more parameters,
but because the simplest extensions one can make are not suitable. In the case
of the strong interaction the particles we actually observe in nature are not the
fundamental degrees of freedom in the Lagrangian for the field theory, and we
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must explain this, and discover how we can in fact make calculations in such
a theory. In the electroweak sector of the Standard Model the short range of
the interactions makes it difficult to construct a theory which is renormalizable,
i.e. where the divergences in the theory one automatically encounters beyond
leading order are under control, and can be removed with a redefinition of
the parameters in the theory, and which is unitary, i.e. S† = S−1, where
the S-matrix S evolves states from t → −∞ to t → ∞, taking account of
scattering. Lack of unitarity occurs if non-physical (sometimes negative norm)
particle states actually contribute in scattering processes. Hence, both the
electroweak and strong forces have complications which we will overcome (the
former requiring the introduction of the recently discovered Higgs boson), and
examine the consequences.

Hence, the structure of the course will be as follows:

1. Introduction. Conventions. Particles and fields. Gauge theories.

2. Problems encountered when describing short-range interactions. Sponta-
neous symmetry breaking. Massless particles and Goldstone’s theorem.
Massive vector bosons and Higg’s model, both Abelian and Non-Abelian.
Renormalization and unitarity.

3. Electroweak gauge theory. SU(2)L×U(1)Y . Leptons and Quarks. Masses
and mixing. CKM matrix.

4. Parity, charge conjugation and time-reversal. PCT. Violations of each in
the Standard Model. Neutrino masses.

5. Weak interactions. Leptonic-processes. Semi and non-leptonic processes.
CP violation in nature.

6. Strong interactions and Quantum ChromoDynamics (QCD). Structure of
the theory. Running coupling, renormalization group, asymptotic free-
dom. Examples: e+e− → hadrons, deep inelastic scattering (DIS) -
e p→ e +X via a highly virtual photon.

7. Depending on time, limitations of the Standard Model.
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1 Particles

The Standard Model contains:

fermions
(

d
u

) (

s
c

) (

b
t

)

quarks
(

e
νe

)(

µ
νµ

)(

τ
ντ

)

leptons

vector bosons γ, W±, Z g

scalar boson H

and the gauge group for the complete theory is SU(3) × SU(2)L × U(1)Y ,
where the SU(2)L × U(1)Y is broken by a choice of vacuum to U(1)Q.

There are 19 parameters in the Standard Model (assuming for the moment
zero neutrino mass):

• 9 fermion masses

• 3 gauge couplings

• 4 quark mixings

• 2 Higgs potential terms (e.g. mass and self-coupling)

• 1 QCD Θ-vacuum term.

The last of these is known to be ≤ 10−9, and it is often assumed that there
is some underlying explanation why it is zero in value.

All of the particles in the Standard Model are described by quantum field
theory.

2 Scalar Field Theory

The Lagrangian for the complex scalar field is

L = −1
2
φ(x)(✷+m2)φ(x)∗ −Lint(|φ(x)|), (1)

where the part quadratic in the fields is often called Lf , where f indicates
free since this part represents a non-interacting theory. In terms of momentum
modes the free scalar field has the expansion

φ(x) =
∑

p
[a(p) exp(−ip · x) + b†(p) exp(ip · x)], (2)

where
∑

p
=

∫

d3p

(2π)3 2E
(3)
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is the Lorentz invariance phase space for an on-shell particle, and the equation
of motion for φ(x)

(✷+m2)φ(x) = 0 (4)

enforces the on-shell condition E2 = p2 +m2. a(p) is the annihilation operator
for particles and b†(p) is the creation operator for anti-particles. a(p) = b(p)
for a real field.

The fields satisfy the quantization commutation condition [φ(x), π(y)] =
iδ3(x − y), where the conjugate momentum π(x) = ∂L/∂(∂φ/∂t) = ∂φ(x)/∂t.
This results in the condition on the creation and annihilation operators of
[aq, a

†
p
] = (2π)32E(p)δ3(p− q).

In perturbation theory the lines in Feynman diagrams represent the propa-
gation of free particles between interactions and are related to the free part of
the Lagrangian. i.e. if

Lf = φ(x)∗O(∂µ, m)φ(x) (5)

then the propagator (time-ordered two-point Green’s function) is given by

〈0|T (φ(x)φ(y))|0〉 = −iO−1(x, y) (6)

where
O(∂µ, m)O−1(x, y) = δ4(x− y) (7)

In position space

−iO−1(x, y) ≡ GF (x− y) =
∫

i
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iǫ
, (8)

where ǫ is an infinitesimal constant. This is known as the Feynman propagator,
and represents a free particle created at y and annihilated at x if t > t′ and
created at x and annihilated at y if t′ > t. It is easy to show that this Feynman
Green’s function is a Green’s function of the Klein-Gordon operator:

(∂2x +m2)GF (x− y) = −iδ4(x− y). (9)

In momentum space
Õ(p2, m2)Õ−1(p2, m2) = i. (10)

The propagator is normally expressed as the momentum space two-point func-
tion and in this case is

D(p2) =
i

p2 −m2 + iǫ
(11)

where the iǫ is a prescription for avoiding the pole and which leads to causal

propagation. We generally also have interaction vertices, e.g. if Lint = −λ |φ(x)|4
4!

this corresponds to a four-point vertex with factor −iλ
4!
.
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3 Fermionic Fields - Spinors

Fermions are represented by 4-component spinors ψα(x) satisfying the Dirac
equation

(iγ · ∂ −m)ψ(x) = 0. (12)

The γ-matrices are defined by

{γµ, γν} = 2gµνI4 (13)

where I4 is the 4-dimensional identity matrix in spinor space, and is usually left
implicit, and g is the metric tensor with convention g00 = 1, gii = −1, i = 1, 2, 3.

If γ = (γ1, γ2, γ3) then we usually specify

(γ0)† = γ0, γ† = −γ. (14)

The Dirac Hamiltonian is

HD = −iα · ∇+ βm, (15)

where β = γ0 and α = γ0γ, so the above conditions guarantee the explicit
hermiticity of the Hamiltonian. An equivalent way of expressing the condition
is

γ0γµ†γ0 = γµ (16)

since (γ0)2 = 1. The representations of the γ-matrices are given as 4 × 4
matrices, though any representation satisfying (13) is equivalent. Note that γµ

are not the components of a 4-vector.
The Lagrangian for fermion fields which results in the Dirac equation is

L = ψ̄(x)(iγ · ∂ −m)ψ(x) (17)

where ψ̄(x) = ψ(x)†γ0. Treating ψ(x) and ψ̄(x) as the two independent fields
one obtains the equations of motion

(iγ · ∂ −m)ψ(x) = 0 (18)

ψ̄(x)(−iγ ·
←

∂ −m) = 0. (19)

In a purely fermionic theory no interaction Lagrangian is allowed. This is be-
cause the simplest interaction is a four-fermion operator, and this has dimension
six, and hence is accompanied by a negative dimension (-2) coupling constant.
Such interactions lead to a lack of renormalizability in a quantum field theory.
This problem will be discussed in more detail later.

The solutions of the equations of motion for the field operators have the
Fourier expansion

ψα(x, t) =
∫ d3k

(2π)3
1

2Ek

∑

s=1,2

[b(s, k)uα(s, k)e
−ik·x + d†(s, k)vα(s, k)e

ik·x](20)

ψ̄α(x, t) =
∫ d3k

(2π)3
1

2Ek

∑

s=1,2

[b†(s, k)ūα(s, k)e
ik·x + d(s, k)v̄α(s, k)e

−ik·x](21)
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where b(s, k) annihilates particles of momentum k and spin s and d†(s, k) creates
anti-particles of momentum k and spin s. The fermionic fields and operators
satisfy anticommutation relations instead of commutation relations.

The spinors uα(s, p) and vα(s, p) have four components each. The label
α ∈ {1, 2, 3, 4} is a spinor index that will usually be suppressed. They satisfy
the equations

(γ · p−m)u(s, p) = 0 (γ · p+m)v(s, p) = 0, (22)

which again ensures that E2 = p2 +m2. They correspond to the positive and
negative energy solutions in relativistic quantum mechanics.

The conventional choice of the γ-matrices is the Dirac representation:

γ =
(

0 σ
−σ 0

)

, γ0 =
(

1 0
0 −1

)

. (23)

Note that each entry above denotes a two-by-two block and that the 1 denotes
the 2 × 2 identity matrix and σi are the Pauli matrices. Using this convention
the explicit expressions for uα(s, p) and vα(s, p) are

√
E+m

(

χr
σ·p

E+m
χr

)

. (24)

and √
E+m

( σ·p

E+m
χr

χr

)

. (25)

The argument r takes the values 1, 2, with

χ1 =
(

1
0

)

, χ2 =
(

0
1

)

. (26)

For the simple case p = 0 we may interpret χ1 as the spin-up state and χ2 as
the spin-down state. Thus for p = 0 the 4-component wave function has a very
simple interpretation: the first two components describe electrons with spin-
up and spin-down, while the second two components describe positrons with
spin-up and spin-down. Thus we understand on physical grounds why the wave
function had to have four components.

The fermion propagator is represented as below

fermion line
α β

p
i(γ.p +m)αβ
p2 −m2 + iǫ

And we also have

• Outgoing electron ūα(s, p)

• Incoming electron uα(s, p)

• Outgoing positron vα(s, p)

• Incoming positron v̄α(s, p)
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4 Chirality

We can examine a particular additional property of the Dirac field known as
the chiral structure. In order to do this it is necessary to define

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 =
(

0 1
1 0

)

, (27)

where the last equality is valid in the Dirac representation. This new matrix
satisfies

γ5† = γ5,
{

γ5, γµ
}

= 0, (γ5)2 = 1, (28)

where all the above are independent of representation. This matrix allows us
to introduce the concept of chiral symmetry, which is related to the massless
limit of fermion fields.

Let us consider the field corresponding to a massless particle. Such a field
satisfies the massless Dirac equation:

γ.∂ψ(x) = 0 . (29)

This has the important property that, because γµγ5 = −γ5γµ, γ5ψ(x) also
satisfies the same equation,

γ.∂γ5ψ(x) = 0 . (30)

It follows that the fields

ψL(x) =
1
2
(1− γ5)ψ(x) ≡ PLψ(x) and ψR(x) =

1
2
(1 + γ5)ψ(x) ≡ PRψ(x)

(31)
do so as well. Since γ5

2 = 1, PL and PR define a set of projection operators

P 2
L = PL, P 2

R = PR, PLPR = PRPL = 0, PL + PR = 1. (32)

The fields in (31) are eigenvectors of γ5 with eigenvalues ∓1 and describe
particles of definite helicity or handedness. To show this we use the result that
the angular momentum operator acting on solutions of the Dirac equation ψ(x)
is J = −ix ×∇ + S where the spin Si = i1

4
ǫijkγ

jγk. Using γ5 = iγ0γ1γ2γ3 it is
possible to see that γ5S = 1

2
γ0γ = Sγ5. We have therefore for a Dirac spinor of

momentum p

(γ.p)u(p, λ) = 0 ⇒ (γ0|p|−γ ·p)u(p, λ) = 0 ⇒ (1−γ0γ · p̂)u(p, λ) = 0, (33)

where we have used p̂ = p/E (|p| = E for massless particles). Multiplying
through by γ5 we obtain

γ5u(p, λ) = 2S.p̂u(p, λ) (34)

The component of the spin of a particle along the direction of motion, measured
by S.p̂, is defined to be the helicity. Hence for the projections in eq.(31)

(1 + 2S.p̂)uL(p, λ) = 0 , (1− 2S.p̂)uR(p, λ) = 0 , (35)
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so that these describe left-handed and right-handed particles, with negative and
positive helicity ∓1

2
, respectively.

We can also write massive fields in terms of their chiral components,

ψ(x) = ψR(x) + ψL(x) , (36)

where
ψR(x) =

1
2
(1 + γ5)ψ(x) and ψL(x) =

1
2
(1− γ5)ψ(x) . (37)

The conjugate fields are

ψR(x) = ψR(x)
†γ0 = ψ(x)† 1

2
(1 + γ5) γ

0 = ψ̄(x)1
2
(1− γ5) , (38)

and similarly
ψL(x) = ψ̄(x)1

2
(1 + γ5) . (39)

It follows that
ψR(x)ψR(x) = ψL(x)ψL(x) = 0 , (40)

and
ψR(x)γ

αψL(x) = ψL(x)γ
αψR(x) = 0 . (41)

The Lagrangian L = ψ̄(x)(iγ · ∂ −m)ψ(x) can then be rewritten as

L(x) = ψR(x)iγ.∂ψR(x) + ψL(x)iγ.∂ψL(x)−m
[

ψR(x)ψL(x) + ψL(x)ψR(x)
]

.

(42)
The ‘kinetic’ part of the Lagrangian is therefore a sum of two terms involving
the right and left chiral components separately, while the mass term couples
right to left and left to right. Hence massless particle have definite helicity and
chiral symmetry, while mass breaks this symmetry. This has a clear physical
interpretation since if the massive particle has its spin along its direction of
motion in one frame one can always boost to another frame where it is in the
opposite direction relative to its motion. This is not possible for a massless
particle.

In the Standard Model chiral symmetry is spontaneously broken. There-
fore although (most and probably all) particles have mass, vestiges of chirality
remain in the complete theory, e.g. only left handed particles couple to the
charged weak bosons.

5 Gauge Fields - Abelian

I will start with the assumption that one can construct a quantum field the-
ory involving vector fields just by maintaining Lorentz covariance. Hence, we
consider the single real vector field Aµ(x) for some general Lorentz-invariant
Lagrangian. The quantum field theory can be constructed by definining the
conjugate momentum field Πν = ∂L

∂(∂Aν/∂t)
and imposing the commutation rela-

tions
[Aµ(x, t),Πν(y, t)] = −igµνδ3(x− y). (43)
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The Fourier expansion of the quantum field may be written

Aµ(x, t) =
∫

d3k

(2π)3
1

2Ek

∑

λ=0,3

[ǫµ(λ, k)a(λ, k)e
−ik·x + ǫ∗µ(λ, k)a

†(λ, k)eik·x] (44)

where the a(λ, k), a†(λ, k) have their usual interpretation as creation and anni-
hilation operators and ǫµ(λ, k) are polarization vectors which are generally two
transverse, i.e. ǫ · k = 0, one longitudinal and one timelike.

i

i

f

f

all states

=
∑

c

i

i

f

f

∗

sum over physical states

Figure 1: Diagrammatic representation of unitarity.

The commutation relation for the fields leads to the commutator for the
creation and annihilation operators.

[a(λ, k′), ), a†(λ′, k)] = −gλλ′2Ek(2π)
3δ3(k − k′), (45)

i.e. the timelike vector bosons have a negative norm. This unavoidably leads
to problems with unitarity. The S-matrix for particle scattering is defined by

|out〉 = S†|in〉. (46)

Therefore in order for probability to be conserved we must have 〈in|in〉 =
〈out|out〉, which means

S†S = SS† = 1, S† = S−1, (47)

which is known as unitarity of the S-matrix. For incoming state labelled by a
and final state labelled by b, we can express the S-matrix in the form

Sab = δabδ
4(pa − pb) + i(2π)4δ4(pa − pb)Tab, (48)

where pa and pb represent the sum of the four momenta for all incoming and
outgoing particles respectively, δab represents the identical outgoing state to
incoming state (hence no scattering), and Tab is known as the scattering ampli-
tude. Unitarity demands that

ImTab =
1
2
(2π)4

∑

c

TacT
∗
bcδ

4(pa − pc), (49)

where c is the sum over all physical states. The imaginary part of a diagram
can be shown to be equivalent to taking a line which separates (cuts) the initial
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state from the final state by crossing intermediate propagators, replacing all cut
propagators with the on-shell condition for these particles (Θ(p0)δ

4(p2 −m2))
taking the complex conjugate of the right-hand side and summing over all cuts.
The imaginary part of the amplitude is then obtained by summing over all
diagrams. Hence, (49) is represented as below:

Even if one restricts negative norm states from the external states, in an
interacting quantum field theory they will appear in the diagrams represented
in the left-hand-side of Figure 1 and spoil the equivalence of both sides and
violate unitarity.

In order to have a physically viable quantum field theory of vector bosons
we must restrict the degrees of freedom so that the negative norm states do
not contribute. In fact we have a well-known vector particle, the photon, which
we know has only two degrees of freedom, i.e. the two transverse polarizations
ǫ · p = 0, rather than the four apparent degrees of freedom in a vector field. In
order to describe this theory we impose the (Abelian) gauge symmetry on the
theory, i.e. define a Lagrangian which is invariant under the transformation of
the gauge field

Aµ(x) → Aµ(x)−
1

e
∂µχ(x). (50)

This is achieved by defining the Lagrangian

Lg = −1

4
F µνFµν , (51)

where the field strength Fµν = ∂µAν − ∂νAµ, and the factor of 1
4
is a normaliza-

tion chosen to obtain Maxwell’s equations when coupling to a current.
We can couple the gauge field to fermionic fields to produce an interact-

ing gauge theory by demanding that the theory be invariant under additional
transformations

ψ(x) → exp(iχ(x))ψ(x), ψ̄(x) → ψ̄(x) exp(−iχ(x)), (52)

and by defining the covariant derivative

Dµ ≡ ∂µ + ieAµ. (53)

The fermionic part of the Lagrangian is then

Lf = iψ̄γµDµψ −mψ̄ψ, (54)

and this gives Lint = −eψ̄γµAµψ resulting in the below interaction vertex:

Vertex

α β

µ
−ieγµαβ
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However, the full quantization also requires an explicit fixing of the gauge
e.g. ∂µAµ = 0 is the conventional choice. This is required for two reasons.
Firstly, using the standard gauge field Lagrangian the conjugate momentum
Π0(x) = (∂L/∂((∂A0(x)/∂t))) does not exist due to the antisymmetry of the
field strength, thus making the canonical commutation procedure impossible.
Secondly, there is no inverse to the quadratic part of the Lagrangian, making
the definition of a propagator impossible. This can be seen as follows. In
momentum space the free part of the Lagrangian is

Lfree = −1
2
Aµ(−p)

(

gµν −
pµpν
p2

)

p2Aν(p), (55)

where gµν − pµpν
p2

= P T
µν and pµpν

p2
= PL

µν define generalized projection operators

P T
µλP

Tλν = P Tν
µ = δνµ −

pµp
ν

p2
, PL

µλP
Lλν = PLν

µ = pµpν

p2
,

P T
µλP

Lλν = PL
µλP

Tλν = 0, P T
µν + PL

µν = gµν .

(The latter identity illustrating the problem of a timelike negative norm state.)
Hence, the free part of the Lagrangian has momentum dependence which is
∝ P T

µν and it is not difficult to see that there is no inverse of this tensor. This
can be rectified by adding the gauge condition to the Lagrangian as a constraint,
i.e. adding a gauge-fixing term λ(∂µA

µ)2, where λ is a Lagrange multiplier,
and for convenience we often write −1/(2ξ)(∂µA

µ)2, instead. Similarly the
canonical quantization problem is solved by adding this term to the Lagrangian
and additionally demanding that 〈ψ|(∂µAµ)|ψ〉 = 0, where |ψ〉 is a physical
state.

Introducing the gauge-fixing term the free part of the Lagrangian becomes

Lfree = −1
2
Aµ(−p)

[(

gµν −
pµpν
p2

)

p2 − 1

ξ

pµpν
p2

p2
]

Aν(p). (56)

This then leads to the propagator

Dµν(p) =
(

gµν − (1− ξ)
pµpν
p2

) −i
p2 + iǫ

, (57)

which corresponds to massless particles.
Note, that even after fixing the gauge via ∂µA

µ = 0 and therefore removing
1 degree of freedom we can still make a gauge transformation Aµ(x) → Aµ(x)−
1
e
∂µχ(x) as long as ✷χ(x) = 0. Hence we still have one unphysical degree of

freedom, and the physical degrees of freedom indeed number 4− 2, i.e the two
transverse polarizations.

6 Non-Abelian Gauge Theories

One can generalize the above Abelian quantum field theory to more complicated
symmetry transformations. In general we can define the field transformation

ψi(x) → exp(iT · θ(x))ijψj(x) ≡ Uijψj (58)
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where Ta are the generators in a particular n-dimensional representation of a
given gauge group. This gauge group has number of generators, N .

The generators have the property

[Ta, Tb] = ifabcTc, (59)

i.e. they form a closed algebra. fabc are known as the structure constants. The
generators are also orthogonal and normalized to

tr{TaTb} = T (R)δab, (60)

where T (R) is representation dependent, but T (R) = 1
2
for the fundamental

representation, i.e, the represenatation with the lowest dimension. The fabc
are completely antisymmetric under an interchange of indices. As well as the
fundamental representation another commonly encountered representation is
the adjoint representation defined by

(Ta)ij = −ifaij . (61)

This clearly has dimension equal to the number of generators N .
The gauge fields in this theory transform according to

(T · Aµ) → U(T · Aµ)U
−1 +

i

g
(∂µU)U

−1 (62)

where g is the gauge coupling and the covariant derivative is

Dij
µ = ∂µδ

ij + ig(T · Aµ)
ij (63)

so that Dµψ(x) → U(x)Dµψ(x).
The fermionic part of the Lagrangian is defined by

Lf = ψ̄i(iγ
µDij

µ −Mδij)ψj (64)

and is clearly gauge invariant. We define the field strength for the non-Abelian
field as

Faµν = ∂µAaν − ∂νAaµ − gfabcAbµAcν , (65)

which is derived from the equivalent definition

TaFaµν = − i

g
[Dµ, Dν ]. (66)

From the transformation rule of the covariant derivative it is easy to see that
TaFaµν → UTaFaµνU

−1. Hence the gauge part of the Lagrangian

Lgauge = −1

4
tr(F µν

a Faµν) (67)

is invariant under gauge transformations. There are no mass terms in the La-
grangian, and the gauge fields are massless, as in QED. In fact the part of the
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Lagrangian which is quadratic in gauge fields alone is the same for each of the
N fields as it was for the photon field, and polarization is transverse.

In order to quantize it is again necessary to fix the gauge for each field.
This can be done in exactly the same way e.g. adding −1/(2ξ)(∂µA

µ
a)

2 to the
Lagrangian. However, the gauge fixing procedure is more complicated due to
the self-interaction of the gauge bosons. In order to cancel the unphysical modes
it is now necessary to introduce ghost fields into the Lagrangian via, e.g. the
term

Lgh = ∂µC
†
a(D

µ
abCb). (68)

The ghosts Ca have dimensions of scalar fields, but satisfy anticommutation
relations like fermions. The full Lagrangian, including gauge fixing and ghost
satisfies a generalized symmetry (BRS symmetry).

Due to the gauge field self-interaction there are now additional vertices in
the Feynman rules, i.e.

gfabc(∂µAaν)A
µ
bA

ν
c −1

4
g2fabcfadeA

µ
bA

ν
cAdµAeν

b c

a

a b

c d

There will also be ghost-gauge field interactions, but these will depend on
the gauge-fixing. (Physical gauge-fixing can decouple ghosts, but at the expense
of other complications, e.g. lack of manifest Lorentz covariance.)
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