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Antimatter: Why Does It Matter?

® The Standard Model predicts the universe should have
nearly equal amounts of matter and antimatter, but we
haven't found any large quantity of antimatter

® Charge Parity Time (CPT) symmetry predicts the
fundamental properties of antimatter should have the
same magnitude as matter [1], and a violation of CPT
symmetry would break the standard model

® Precision measurements on antimatter are necessary
in order to test CPT symmetry and try to find an

explanation for the missing antimatter

http://raman.physics.berkeley.edu/gallery.html
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Antihydrogen

Antimatter version of hydrogen

Cold atoms (<0.54K) are trapped by magnetic
fields in the ALPHA experiment

An ultra high vacuum (10-13 torr or better) and
cold (5K) trap makes it possible to trap atoms for
tens of hours, and perform precise measurements
of their charge and energy levels [2, 3, 11]

Atoms are electrically neutral, and thus are a
prime candidate for measuring the gravitational
behavior of antimatter

http://raman.physics.berkeley.edu/gallery.html



Antiproton Decelerator

® The Antiproton Decelerator at CERN is a unique
facility that prepares cold antiprotons

® Decelerates antiprotons from 3.5 GeV to 5.3 MeV

Home to multiple international collaborations

studying antiprotons, antiprotonic helium, and
antihydrogen

® Approximately 7.5x1012 antiprotons are decelerated
in the AD every year

@® Science fiction fact-check: If all the antiprotons
decelerated in a year happened to annihilate at the
same time, the energy wouldn't be enough to boil a
cup of water.



The ALPHA Experiment

Antihydrogen Laser PHysics Apparatus

(ALPHA)

Located in the Antiproton Decelerator (AD)

Hall at CERN

Can accumulate antihydrogen atoms in the

trap [10]

First trapped antihydrogen for 1000 seconds

in 2010 [4]

In 2016 and 2017, made the first A T i

measurements of the 1S-2S spectroscopy Members.of the ALPHA collaboration next to
the experiment

lineshape, Lyman-alpha transition, and https://cds.cern.ch/record/2238961

hyperfine spectrum of antihydrogen [3, 5, 11]
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The “Sequencer”

® Experimentis controlled with

Labview

® The Sequencer is a labview _ﬂ___“ﬁ

program that controls the

hardware in the apparatus
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Long-Term Stability of Plasma
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Figure from reference [6]

than a factor of 10 (!)



Making Antihydrogen

® In the catching trap:
O Prepare electron plasma and put into a 5 kV potential well
©  Catch antiprotons in deep well
o0 (ool antiproton-electron plasma in a 3T field, then kick out e- with a series of short high voltage
pulses

® In the positron-end of the atom trap:
o0 Transfer positrons into the far end of the atom trap, modify plasma to have a particular density
and number of particles
©  Cool positrons via cyclotron radiation in a 3T field
® In the atom trap:

O Make another electron plasma, transfer antiprotons into the atom trap and cool again
o (ool positrons via adiabatic cooling or evaporative cooling



Making Antihydrogen

@ Trap magnets are energized e b
10} : P

® Antiprotons and positrons are
put in adjacent potential wells
® Potential wells are merged

Potential on axis (V)

together over about 1s, mixing
particles and forming

antihydrogen
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Trapping Antihydrogen

. AtOInS COlder than 054‘K Can be Solenoid Electr{‘,‘des Mirror coils Octupole Solenoid Cavity o:,rtput
TS / coupler
I S\
trapped - \ e o v \__
. Liquid helium “ R - —
® Can accumulate atoms with ;& : L2 B .
2 e acuum W. | m =
multiple trapping cycles \ ;
® Atoms can be trapped for " ‘-3\"-‘.“‘% i l ____ = : :ltk
. . input coupler Antiproton Antihydrogen synthesis Positron nnihilation
Several hours allOWlng preCISe preparation and trapping preparation detector
measurements to be performed _ ¢ |
%} 1.6
% 14
E 12_
! ._?400 300 -2IOU —1IUU 0 1 IUU 260 300 400

Axial position (mm)

http://www.nature.com/nature/journal/v541/n7638/fig_t
ab/nature21040_F1.html



Detecting Antihydrogen

Top View Run 49182, Event 10471, Trigger 10471, VF48 Time 760.165078
Side View
® Antihydrogen studies require Front View
All Views
destructively counting the number of X3D - .
atoms that annihilate at different times j

during a measurement

® Annihilation occurs when an atom is
excited into a higher-energy state, or if the
trap magnets turn off.

® Antihydrogen annihilations normally
produce short-lived pions

® Charged pions leave a signal in our Silicon
Vertex Detector (SVD)




1S5-2S Spectroscopy

® CPT predicts antihydrogen should have the
same difference in energy levels as hydrogen

® In ALPHA, we use “doppler-free” spectroscopy
for the 1s-2s measurements

® Excited atoms can escape the trap:
* An additional photon can ionize the atom
* The positron spin can flip while the atom
decays back to the 1s state

® We count annihilations while the laser is on
(“appearance”) and count the number of
atoms remaining at the end (“disappearance”)
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Figure from reference [3]



1S5-2S Spectroscopy
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1S5-2S Spectroscopy

® Observation: antihydrogen and
hydrogen have the same 1S-2S
energy level difference to ah

® Precision measurement to the
level of a few parts per trillion
corresponds to an energy
sensitivity of 9x10-20 GeV

® This is one of the most sensitive
direct measurements of CPT
symmetry

Figure from reference [3]
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Hyperfine Spectrum
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Counts

Hyperfine Spectrum
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Lyman-alpha spectroscopy result

® 1S-2P transition

® The lineshape of the detected
events matched the simulation
for the conditions inside the _— ?i é % ‘E Eiﬁ:}gﬁ:gg;
trap

o

® Precision is on the order of
5x10-8 s § g
® This resultis not nearly precise

as the 1s-2s measurement, but  *®°4%—r—r——rrrrrEEEEEEE—————————————————
Detuning (GHz)

0.08

0.04

Probability

obvserving this transition is a
really important step towards
laser cooling antihydrogen Figure from reference [11]



Summary

The ALPHA experiment has recently made high precision measurements on
antihydrogen to test CPT symmetry

In 2016-2017 we increased our rate of trapping antihydrogen atoms by nearly a
factor of 20

We also developed a method for accumulating hundreds of antihydrogen atoms
Several exciting new measurements have been performed to measure the 1s-2s
and 1s-2p spectroscopies and the hyperfine transition

Results are in agreement with CPT symmetry

We need to keep searching for an explanation regarding the missing antimatter
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Got questions?

(of course you do, you're a physicist!)



Lyman-alpha spectroscopy details

® 1s-2p transition: required for directly laser-cooling
antihydrogen

® Requires 121.6nm photons: these are produced by
doubling the frequency of 730-nm photons created by a
Toptica diode laser, then applying third harmonic
generation in a high-pressure gas cell using a mixture of Kr
and Ar

® Photons are produced in pulses 30ns long, have energy
~0.5n]J, and are produced at a rate of 10 Hz

® Photons enter the experiment through a MgF2 window and
exit out the other end; a PMT measures the intensity.



