
Deep learning on FPGAs for L1 trigger
and Data Acquisition

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab)
Jennifer Ngadiuba, Maurizio Pierini (CERN)

Edward Kreinar (Hawkeye 360)
Phil Harris, Song Han (MIT)

Zhenbin Wu (University of Illinois at Chicago)

UCL HEP Seminar, January 11, 2019

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 2

Motivation
The challenge: triggering at (HL-)LHC

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 3

The challenge: triggering at LHC

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels

 3

The LHC big data problem

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 4

The challenge: triggering at HL-LHC

 4

CHALLENGE: maintain physics in increasingly complex
collision environment

→ untriggered events lost forever!

Sophisticated techniques needed to preserve the physics!

Squeeze the beams to increase data rates

→ multiple pp collisions per bunch crossing (pileup)

2016: <PU> ~ 20-50

2017 + Run 3: <PU> ~ 50-80

HL-LHC: 140-200

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels

The LHC big data problem

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 5

A typical trigger system
Triggering typically performed in multiple stages @ ATLAS and CMS

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

L1 Trigger High-Level

Trigger

Absorbs 100s TB/s
Trigger decision to be made in O(μs)
Latencies require all-FPGA design

Computing farm for detailed
analysis of the full event
Latency O(100 ms)

For HL-LHC upgrade: latency and output rates will
increase by ~ 3 (ex: for CMS 3.8 → 12.5 μs @ L1)

custom hardware

computing farm

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

New trigger algorithms

 6

The detector and
its trigger system

Output: trigger primitives
(calo energy clusters,

muons, tracks)

Particle-flow algorithm @ L1

CMS-TDR-017, JINST 12 (2017) P10003

Output:
particle candidates
(prompt vs pileup particles)

Trigger decision

https://cds.cern.ch/record/2283192?ln=it
https://arxiv.org/abs/1706.04965

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

New trigger algorithms

 7

The detector and
its trigger system

Output: trigger primitives
(calo energy clusters,

muons, tracks)

Particle-flow algorithm @ L1

CMS-TDR-017, JINST 12 (2017) P10003

Output:
particle candidates

Machine learning

Trigger decision

THIS TALK!

https://cds.cern.ch/record/2283192?ln=it
https://arxiv.org/abs/1706.04965

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

New trigger algorithms

 8

The detector and
its trigger system

Output: trigger primitives
(calo energy clusters,

muons, tracks)

Particle-flow algorithm @ L1

CMS-TDR-017, JINST 12 (2017) P10003

Output:
particle candidates

Machine learning

THIS TALK!

Trigger decision

https://cds.cern.ch/record/2283192?ln=it
https://arxiv.org/abs/1706.04965

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 9

The latency landscape @ LHC

FPGAs

computing farm

 9

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level

Trigger

100 ms 1 s

ML methods typically employed in
offline analysis or longer latency
trigger tasks

Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle
energy regression, analysis selections, ….

computing farm

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 10

The latency landscape @ LHC

FPGAs

computing farm

 10

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level

Trigger

100 ms 1 s

ML methods typically employed in
offline analysis or longer latency
trigger tasks

Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle
energy regression, analysis selections, ….

ex, identification of b-quark jets

Deep neural network based
on high-level features

both offline and @ HLT

computing farm

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 11

The latency landscape @ LHC

FPGAs

computing farm

 11

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level

Trigger

100 ms 1 s

ML methods typically employed in
offline analysis or longer latency
trigger tasks

Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle
energy regression, analysis selections, ….

ex, Higgs discovery

ML algorithms used offline for
✴ improving Higgs mass resolution with

particle energy regression
✴ enhancing signal/background

discrimination

computing farm

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 12

The latency landscape @ LHC

 12

ML methods typically employed in
offline analysis or longer latency
trigger tasks

Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle energy
regression, analysis selections, ….

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level

Trigger

computing farm

FPGAs

Exploration of ML algorithms in
low-latency, real-time processing
has just begun!

What can we do in < us on one FPGA?

100 ms 1 s1 ns 1 μs

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Muon reconstruction @ L1
First implementation of a ML algo for CMS L1 trigger
on FPGAs [*]

A BDT is used to improve the momentum of muons in
the forward region of the detector

based on curvature angles in the magnetic fields
(Δɸ,Δθ) and few other variables

Prediction of BDT for every possible input stored into
pre-computed 1.2 GB Look-Up Table (LUT) on FPGA

Achieved reduction of background rates by factor 3
w/o efficiency losses

Usage of LUTs does not scale nicely with ML algo
complexity → quickly use all resources

Can we improve this approach?

 13

[*] http://cds.cern.ch/record/2290188/files/CR2017_357.pdf?version=1

http://cds.cern.ch/record/2290188/files/CR2017_357.pdf?version=1

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 14

Machine Learning & FPGAs

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 15

The rise of specialized hardware for ML
GPUs excell at parallel processing

Good for complex NN training of huge
amount of data!
Notoriously power-hungry

Sub-optimal for fast and simple NN
inference

Optimize resources utilization for less
intensive tasks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 16

GPUs excell at parallel processing

Good for complex NN training of huge
amount of data!
Notoriously power-hungry

Sub-optimal for fast and simple NN
inference

Optimize resources utilization for less
intensive tasks

New developments in
FPGAs and ASICs making

#RealTimeAI possible!

The rise of specialized hardware for ML

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 17

The rise of specialized hardware for ML

New developments in
FPGAs and ASICs making

#RealTimeAI possible!

Intel Arria 10 already at
cloud scale for Microsoft

Bing, Azure, etc..

Custom AI hardware for
Google on the cloud

 17

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

What are FPGAs?

Field Programmable Gate Arrays are reprogrammable
integrated circuits

Contain array of logic cells used to configure low level
operations (bit masking, shifting, addition)

 18

FPGA diagram

Logic cell

Flip-flop

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Look-up
table
(logic) (registers)

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

What are FPGAs?

 19

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components:

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

Field Programmable Gate Arrays are reprogrammable
integrated circuits

Contain array of logic cells used to configure low level
operations (bit masking, shifting, addition)

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

What are FPGAs?

 20

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Field Programmable Gate Arrays are reprogrammable
integrated circuits

Contain array of logic cells embedded with DSPs,
BRAMs, etc.

High speed input/output to handle the large bandwith

Support highly parallel algorithm implementations

Low power (relative to CPU/GPU)

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

Flip-flops (FF) and look up tables
(LUTs) for additions

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which describe
electronic circuits

High Level Synthesis

generate HDL from more common C/C++ code
pre-processor directives and constraints used to
optimize the timing
drastic decrease in firmware development time!

We use here Xilinx Vivado HLS [*], but plan also
Intel/Altera Quartus HLS

 21

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 22

Machine learning & FPGAs
FPGAs used broadly across particle physics experiments for DAQ and trigger
development

becoming more accessible thanks to use of HLS

the hardware structures maps nicely onto ML architectures

early adoption of ML algorithms for L1 trigger uses BDT

Extensive literature on deep learning in FPGAs

mainly targeting acceleration of large networks, relaxed latency constraints

support of ML architectures in Keras/TensorFlow, Caffe, Torch

This is the first dedicated study on inference of deep neural networks in FPGAs for
low-latency application arxiv.1804.06913

https://arxiv.org/pdf/1804.06913.pdf

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 23

Neural network inference

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 24

Neural network inference

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

How many resources?
DSPs, LUTs, FFs?

Does the model fit in the
latency requirements?

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 25

Case study: jet tagging
Study a multi-classification task: discrimination between highly energetic (boosted)
q, g, W, Z, t initiated jets

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

 top
other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Z W gluon

t→bW→bqq

3-prong jet

Signal: reconstructed as one massive jet with substructure

q/g background

Jet substructure observables used to distinguish signal vs background [*]

W→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..

 25

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Jet substructure features

 26

Jet substructure observables provide large discrimination
power between these types of jets

mass, multipliticity, energy correlation functions, …
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

 M. Cacciari et al, Eur. Phys. J.C72(2012)1896

These are expert-level features

Not necessarily realistic for L1 trigger
“Raw” particle candidates more suitable (to be studied next)
But lessons here are generic

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for
b-tagging information

http://iopscience.iop.org/article/10.1088/1748-0221/13/01/T01003/meta
https://link.springer.com/article/10.1140/epjc/s10052-012-1896-2

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Case study: jet tagging

• Fully connected neural network with 16 expert inputs:

- Relu activation function for intermediate layers

- Softmax activation function for output layer

 27

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

AUC = area under ROC curve
(100% is perfect, 20% is random)

• We train (on GPU) a five output multi-classifier: sample of events with two boosted WW/
ZZ/tt/qq/gg anti-kT jets, generated with Madgraph and showered with Pythia8

better

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 28

We have three handles:

- compression: reduce number of synapses or neurons

- quantization: reduces the precision of the calculations (inputs,
weights, biases)

- parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility

Performance depends on how well you
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 29

We have three handles:

- compression: reduce number of synapses or neurons

- quantization: reduces the precision of the calculations (inputs,
weights, biases)

- parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility

Performance depends on how well you
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 30

Efficient NN design: compression
• Iterative approach:

- train with L1 regularization (loss function augmented with penalty term):

- sort the weights based on the value relative to the max value of the
weights in that layer

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 31

Efficient NN design: compression
• Iterative approach:

- train with L1 regularization (loss function augmented with penalty term):

- prune weights falling below a certain percentile and retrain

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

- sort the weights based on the value relative to the max value of the
weights in that layer

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Efficient NN design: compression

 32

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Efficient NN design: compression

 33

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 34

We have three handles:

- compression: reduce number of synapses or neurons

- quantization: reduces the precision of the calculations (inputs,
weights, biases)

- parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility

Performance depends on how well you
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 35

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 36

We have three handles:

- compression: reduce number of synapses or neurons

- quantization: reduces the precision of the calculations (inputs,
weights, biases)

- parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility

Performance depends on how well you
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Efficient NN design: parallelization
• Trade-off between latency and FPGA resource usage determined by the parallelization of

the calculations in each layer

• Configure the “reuse factor” = number of times a multiplier is used to do a computation

 37

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Less resources/
Less throughput

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 38

high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#����-�

$

� ��������� ������
�����������

�� ��	��������

�����
���/���

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

Compression, Quantization, and Parallelization made easy in

https://hls-fpga-machine-learning.github.io/hls4ml/

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

The hls4ml package

 39

Javier Duarte I hls4ml 21

Program Flow
python keras-to-hls.py -c keras-config.ymlTranslation

Inputs

Config

• IOType: parallelize or serialize

• ReuseFactor: how much to parallelize

• DefaultPrecision: inputs, weights, biases

my-hls-test/:
build_prj.tcl
firmware
myproject_test.cpp

 39

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 40

Javier Duarte I hls4ml 22

Program Flow
vivado_hls -f build_prj.tclBuild HLS project

#################
HLS4ML
#################
open_project -reset myproject_prj
set_top myproject
add_files firmware/myproject.cpp -cflags "-I[file normalize ../../nnet_utils]"
add_files -tb myproject_test.cpp -cflags "-I[file normalize ../../nnet_utils]"
add_files -tb firmware/weights
open_solution -reset "solution1"
set_part {xcku115-flvf1924-2-i}
create_clock -period 5 -name default
csim_design
csynth_design
cosim_design -trace_level all
export_design -format ip_catalog
exit

The hls4ml package

Produce a firmware
block in ~ minutes!

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Study details

Map out FPGA performance, resource usage and latency versus compression,
quantization, and parallelization hyperparameters

 41

Xilinx Vivado 2017.2
HLS target clock frequency: 200 MHz (5 clocks/BX)
Kintex Ultrascale, xcku115-flvb2104-2-i

• 1.4M logic cells, 5,520 DSPs, 1.3M FFs, 700k LUTs, 2200 BRAMs

SETUP

GOAL

RESULTS
First examine resource usage coming from HLS estimate
Then discuss the exact resources given by the final implementation

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 42

Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

0101.1011101010

width
fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer>

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 43

• DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Efficient NN design: compression

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Parallelization: DSPs usage

 44

Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Fully parallel

Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

…

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 45

Parallelization: Timing

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

Fully parallel

Each mult. used 1x

Each mult. used 3x

Each mult. used 6x

…

~ 175 ns

~ 75 ns

…La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Longer latency

More resources

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Parallelization

The trade-o� between latency and FPGA resource usage is determined by the parallelization of the
inference calculation. In hls4ml this is configured with a multiplier “reuse factor” that sets the number
of times a multiplier is used in the computation of a layer’s neuron values. With a reuse factor of one,
the computation is fully parallel. With a reuse factor of R, 1/R of the computation is done at a time
with a factor of 1/R fewer multipliers.

FPGA multpliers are pipelined; therefore, the latency of one layer computation, Lm, is approxi-
mately

Lm = Lmult + (R � 1) ⇥ I Imult + Lactiv, (2.4)

where Lmult is the latency of the multiplier, I Imult is the initiation interval of the multiplier, and Lactiv
is the latency of the activation function computation. Equation 2.4 is approximate because, in some

– 13 –

Latency of layer m

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Other resources: FFs and LUTs

 46

Fairly linear increase with precision

Small percentage of total available

Spikes present at steep transitions in LUTs usage as artifacts of HLS synthesis

Not observed in implementation
Found also dependence on Vivado HLS version

Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 47

Firmware implementation
• Final implementation gives actual resource usage

and timing estimate

- how optimal is the HLS design?

• Power usage increases with precision, it goes
down for less throughput (higher reuse factor)

Power

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 48

Firmware implementation
• Final implementation gives actual resource usage

and timing estimate

- how optimal is the HLS design?

• Power usage increases with precision, it goes
down for less throughput (higher reuse factor)

Power

• HLS estimate on resource usage are conservative

- DSPs usage agree well below DSP precision
transition (27 bit), implementation does further
optimization

- FFs and LUTs overestimated by a factor 2-4

DSPs

• Implement a 1-layer NN, simply routing all
firmware block’s inputs and outputs to FPGA
available pins

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 49

Summary and outlook

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 50

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level

Trigger

computing farm

FPGAs

Focused on L1
trigger as first
application

→ pure FPGAs

What can we do in < us on one FPGA?

100 ms 1 s1 ns 1 μs

The latency landscape @ LHC

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 51

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level

Trigger

computing farm

FPGAs

Focused on L1
trigger as first
application

→ pure FPGAs

What can we do in < us on one FPGA?

100 ms 1 s1 ns 1 μs

More time means
More resource reuse (x1000)

Bigger networks
→ acceleration with FPGAs

The latency landscape @ LHC

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019

Heterogeneous computing with co-processors

 52

Intel® Programmable Acceleration
Card with Intel Arria® 10 GX FPGA

Offload a CPU from the computational
heavy parts to a FPGA “accelerator”

Increased computational speed of 10x-100x
Reduced system size of 10x
Reduced power consumption of 10x-100x

Increasing popularity of co-processor
systems

CPU+FPGA / CPU+GPU / CPU+TPU / …
Common setup for FPGA connects to CPU
through PCI-express

Use case @ LHC to accelerate slow algorithms (ex: tracking)
and ML inference for HLT and offline analysis

Ongoing R&D on heterogeneous computing on-site (@CERN) and on commercial
clouds (Microsoft Brainwave, Amazon Web Services, Google TPU cloud)

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 53

goes to the cloud

• Xilinx SDAccel development environment allows the
development/running of connected FPGA kernels
and CPU processes

- any FPGA application defined in HLS, OpenCL, or
VHDL/Verilog can be accelerated

• hls4ml project only needs to be wrapped to provide
specific I/O ports configuration for SDAccel to
interface properly

 53

• Amazon Web Service provides co-processor
CPU+FPGA systems with Xilinx Virtex Ultrascale+ VU9P

• Succesfully accelerated 1D CNN example project on
AWS F1: 10 four-channel inputs , 3 convolutional layers, 2
dense layers, 5 outputs → latency 116 ns

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 54

hls4ml: other NN architectures

• Convolutional Neural Networks
- active implementation of small Conv1D and

Conv2D with hls4ml
- resources reuse and compression supported
- work is ongoing to ensure large scale networks

Use case of CNN
@ LHC for jet

image

JHEP 07 (2016) 069

• Boosted Decision Tree (work in progress)
- each node in decision tree compares element

against a threshold → boolean logic, thresholds
in LUT, suitable for FPGA

- each tree is independent → high parallelization

BDT• Binary/Ternary Neural Networks (work in progress)
- weights are binary/ternary in the inference = ±1,0
- ternary NN does not need pruning/compression
- similar performance and latency with 0% DSPs used

• Recurrent NN and LSTM under testing (work in progress)

https://link.springer.com/article/10.1007/JHEP07(2016)069

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs11.01.2019 55

Summary

Introduced a new software/firmware package hls4ml

Automated translation of everyday machine learning inference into firmware in ~ minutes
Tunable configuration for optimization of your use case

First application is single FPGA, <1 us latency for L1 trigger or DAQ
Explore also applications for acceleration with CPU-FPGA co-processors for long latency

trigger tasks

For more info
https://hls-fpga-machine-learning.github.io/hls4ml/

https://arxiv.org/abs/1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

Physik - Institut

How to do ultrafast 
Deep Neural Network 
inference on FPGAs

6. February 2019  
Physik Institut - Universität Zürich

A key component in autonomous vehicle
and low-latency triggering systems, learn
how FPGAs do real-time DNN inference in
this hands-on course. Topics include:

- Model compression and quantization
- High-level synthesis
- Firmware implementation
- Model acceleration on cloud FPGAs

Lecturers:  
Dr. Jennifer Ngadiuba (CERN) 
Dr. Dylan Rankin (MIT)

Registration and further info at  
indico.cern.ch/e/FPGA4HEP

Organizers:
Thea Årrestad (UZH)  
Jennifer Ngadiuba (CERN)
Dylan Rankin (MIT)  
Maurizio Pierini (CERN) 
Ben Kilminster (UZH)

https://indico.cern.ch/event/769727/

We accept few more registrations
until January 18th!

