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A contradiction?
●

● The Standard Model seems perfect and can exist without 
corrections to the Planck scale

●

●

● But the same Standard Model can't explain dark matter, 
neutrino masses and baryogenesis.

●

● I will propose a set of possible ways out of this
●

Introduction
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Outline
● The physics landscape
●

● Hidden sector theories
●

● The neutrino minimal Standard Model
●

● Design of a new beam-dump experiment

● Sensitivity and future plans

Introduction
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Who are we?

Introduction

www.cern/ch/ship

http://wqww.cern.ch/ship
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The triumph of the Standard Model
● Boson consistent with the SM-Higgs has been found!

● ATLAS : M
H
=125.5 ± 0.2 (stat) +0.5-0.6 (syst) GeV/c2

● CMS : M
H
=125.7 ± 0.3 (stat) ± 0.3 (syst) GeV/c2

Introduction



28 May  2014 6/50

The triumph of the Standard Model
● Mass value important for the stability of the vacuum:

● M
H
<175 GeV

● SM weakly coupled up to the Plank energies !

● M
H
>111 GeV

● EW vacuum is stable or metastable with a lifetime greatly 
exceeding the age of our Universe (JHEP 1208 (2012) 098)

●

●

●

Introduction

http://dx.doi.org/10.1007/JHEP08(2012)098
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The limitations of the Standard Model
● But we still have a number of significant problems
● Theory

● Radiative corrections to Higgs mass
● fine-tuning 

● Experiment
● Matter anti-matter asymmetry in the Universe
● Neutrino masses and oscillations
● Non-baryonic dark matter
● Dark Energy

Introduction
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Direct searches …

Introduction
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... and indirect searches

Introduction
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A hidden sector?
● Rather than being heavy, could new particles be light but 
very weakly interacting?

● A new, light “hidden sector” of particles
● Singlets with respect to gauge group of the SM

●

● How could we have missed it?
● Key is that it only interacts with SM particles through some 
kind of mixing through a “portal” particle

Introduction
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A hidden sector?
● Several possibilities for renormalisable singlet operators

● Vector portal, U(1) B
μν

● Massive vector photon (paraphoton, secluded photon… ) 
mixing with regular photon → εB

μν
Fμν 

● Higgs portal 
● Scalar field χ, (μχ+λχ2)H†H

● Axial portal
● Pseudo Nambu-Goldstone bosons

● Axion like vector field , (a/F)G
μν

Gμν,  (∂
µ
a/F)ψ†γ

µ
γ

5
ψ

● Neutrino portal
● Heavy neutral leptons (HNL), YHTN’L

● Low energy SYSY

Introduction
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Vector Portal
● Exploit mixing between a virtual photon and the dark photon

● No other interactions with SM particles - “light-shining-through-
a-wall” experiments

[arXiv:1311.3870]

Theory

[arXiv:1406.2980]

http://arxiv.org/abs/1311.3870
http://arxiv.org/abs/1406.2980
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Higgs Portal
● Example of inflaton

● Together with Higgs, generates inflation of the early Universe
● Model has a 7 keV (warm) DM candidate and respects 
constraints from BICEP2 and Planck

● Interesting mass region 0.3 GeV < m
χ
 < 1 GeV

● Little experimental exploration of interesting region… 

Theory

● arXiv:1403.4638
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Neutrino Portal
● The neutrino Minimal Standard Model (υMSM) aims to 
explain 

● Matter anti-matter asymmetry in the Universe, neutrino 
masses and oscillations, non-baryonic dark matter

● Adds three right-handed, Majorana, Heavy Neutral Leptons 
(HNL), N

1
, N

2
 and N

3

Theory

[T.Asaka, M.Shaposhnikov, Phys. Lett B620 (2005) 17
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Neutrino Portal
● N

1

● Mass in keV region, (warm) dark matter candidate

● N
2,3

 

● Mass in 100 MeV – GeV region
● Generate neutrino masses via see-saw and produce baryon 
asymmetry of the Universe

   

Theory

[T.Asaka, M.Shaposhnikov, Phys. Lett B620 (2005) 17
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See-saw for ν mass
● Most general renormalisable Lagrangian of all SM 
particles (+3 singlets wrt the SM gauge group):

●

●

●

●

●

Majorana term which
carries no gauge charge 

Yukawa term: mixing of
NI with active neutrinos to

explain oscillations  

Theory
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See-saw for ν mass
● The scale of the active neutrino mass is given by the see-
saw formula, m

ν
=m

D
2/M

● Typical value of the Dirac mass term is linked to the Yukawa 
coupling of the I-th neutrino by m

D
~Y

Ia
ν

Theory
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Constraints on N
1
 as DM

● Stability
● Must have a lifetime larger than that of the Universe

● Production
● Created in the early Universe in reactions l+l-→ νN

1
, 

qq→νN
1
 etc.

● Need to provide correct DM abundance

● Structure formation
● Should be heavy enough to not erase non-uniformities at 
small scales 

● Decay
● Should not produce decays we have already excluded! 

Theory
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N
1
 – dark matter candidate

● Small Yukawa couplings mean that N
1
 can be very stable

Main decay mode N→3ν, clearly unobservable

Subdominant radiative decay N→νγ would give a 
monoenergetic photon with E

γ
=M

N
/2 

Theory
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N
1
 allowed parameter space

20

Theory
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New line in galaxy spectrum?
● ArXiv:1402.4119

● An unidentified line in the x-
ray spectrum of the 
Andromeda galaxy and 
Perseus galaxy cluster E

γ
= 

~3.5 keV

● ArXiv:1402.2301
● Detection of an unidentified 
emission line in the stacked 
x-ray spectrum of galaxy 
clusters E

γ
=~3.56 keV

Astro-H will be able to check 
these claims with better 
energy resolution

Theory
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Generating the baryon asymmetry
● CP is not conserved in the νMSM : 

● 6 new CP-violating phases in lepton sector

●

● Process for Baryon asymmetry
● HNL are created in the early Universe
● CPV in the interference of HNL production and decay
● Lepton number asymmetry goes from HNL to active 
neutrinos

● Asymmetry transferred to baryons via “sphaleron 
processes”

●

Theory
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N
2,3

 production and decay
● M(N

2
) ≈ M(N

3
) ~ a few GeV → can dramatically increase 

amount of CPV to explain Baryon Asymmetry of the 
Universe (BAU) 

● Explanation of DM with N
1
 reduces number of free 

parameters, need degeneracy to ensure sufficient CPV

● Very weak N
2,3 

to ν mixing (~ U2) → N
2,3

 are much longer-

lived than the SM particles 
● Typical lifetimes >10 ms for (N

2,3
) ~ 1 GeV → decay 

distance O(km)
● Too large U erases any BAU

Theory

τ=
U2GF

2 MN
5

86π
3
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N
2,3

 production and decay
● Production in charm decays…

● ... and decays to lighter SM 
particles

●

● For what follows will focus on 
N→μ−π+ decay, BF~0.1-50%

● Similar BF for N→μ−ρ+, 
● BF(N→νµe) ~ 1-10%

m

nm p

s
m

nm

D

D

u

u

N2,3

N2,3
H

H

N 2,3
m

p

nm

N2,3
e

m
nm

ne

u

u

H

H

Theory
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Experimental and cosmological constraints
● BAU, See-saw and Big Bang Nucleosynthesis (BBN) 
constraints indicate that previous experiments probed the 
interesting region only below the kaon mass :

BBN, BAU and Seesaw give stronger constraints than 
experimental searches for M

N
 > 400 MeV

• Previous searches : 
– PS191(’88)@PS 19.2 GeV 

1.4×1019 pot, 128 m from target

– CHARM(’86)@SPS 400 GeV, 2.4×1018 pot, 480 m 
from target

– NuTeV(’99)@Fermilab 800 GeV, 2.5 × 1018 pot, 1.4 
km from target 

Theory
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Experimental and cosmological constraints
● BAU, Seesaw and Big Bang Nucleosynthesis (BBN) 
constraints indicate that previous experiments probed the 
interesting region only below the kaon mass:

● Mixing at both production and decay
● BF(D→NX) around 
10−8 − 10−12

● Lifetime can give 
further factor 10-4

● Need >1016 D mesons! 

Theory
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Where to produce charm?
● cc cross-section:

●

●

●

●

●

●

●

● LHC (√s = 14 TeV)
● 1 ab−1 (i.e. 3-4 years),  2×10∼ 16 in 4π

● SPS (400 GeV p-on-target (pot) √s = 27 GeV)
● 2×1020 pot (i.e. 3-4 years):  2×10∼ 17

● Fermilab: 120 GeV, 10× smaller σ
cc

, 10×pot by 2025 for LBNE

Experiment
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Could mass range be extended?
● Would neutrinos from B-decays extend the mass range 
for N

2,3
 upwards?

● Produced with factor 20-100 smaller cross-section
● Dominant semi-leptonic decay B→Dµν

● Similar limit for neutrino mass

● Charmless B→πµν heavily Cabibbo suppressed

●

● B decays are not at all competitive
●

● Decays from Z→νN neither competitive
● Lifetime too long to contain 

Experiment
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Experimental design
● Propose a beam dump experiment at the CERN SPS 
with a total of  ~2×1020 protons on target 

● Crucial design parameters: 
● Minimise residual neutrino and muon fluxes

● Can produce K0 that decay in detector and mimic signal events
● Short-lived resonances generate 109 muons/spill

● Muon shield
● Neutrinos from light meson decays

● Dense target/hadron absorber

● Prevent neutrino interactions from mimicking HNL decay
● Evacuate decay volume

●

Experiment
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Beamline
●

●

Experiment
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Target
●

●

Experiment

● Compact tungsten target to minimise neutrinos from kaon 
and pion decays

● Significant (but achievable) requirement on cooling and 
radiation protection.

●
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Target
●

●

Experiment

● Compact tungsten target to minimise neutrinos from kaon 
and pion decays

● Significant (but achievable) requirement on cooling and 
radiation protection.

●
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Timeline for civil engineering
●

●

Experiment

● The LS2 of of the LHC is critical for building the new 
extraction point from the SPS

● This is what drives the aggressive schedule for a Technical 
Proposal
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Experimental design
● HNLs produced in charm decays have significant p

T

● Detector must be close to target to maximise geometrical 
acceptance

● Shielding for muons must be as short as possible 

HNL polar 
angle

Polar 
angle of m

from 
N→mp 

Experiment
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35

Generic setup, not to scale!

W-target

Fe/Pb

Magnet
Detector volume

e.
m

, h
ad

ro
ns

neutrino

Shield (W, Fe)

KL, KS, L, n, u

Occupancy
(KL)

p(400 GeV)

p,K
p

m

Vacuum

Multiple scattering

Hard-momentum m (h,r,w)

Low-mid-momentum
m from fast decays of p,K

Return field
Multiple scattering

N2,3

Initial reduction of beam induced backgrounds

-   Heavy target (50 cm of W)
- Hadron absorber
- Muon shield: optimization of
     active and passive shields is
     underway 

Acceptable occupancy <1% per spill
of 5×1013 p.o.t.

spill duration 1s       < 50×106 muons

spill duration 10ms  < 50×103 muons

spill duration 10ms   < 500 muons

Secondary beam line

Experiment
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Muon Shield
● Without μ-filter: 5×109/ spill (5×1013 

pot) 
● Idea to reduce background from µ-
interactions to below ν-background

● Acceptable rate 10∼ 5 µ / 2×1020 pot

● Main sources of muons simulated 
using PYTHIA

● Two alternatives for shield:
● Passive: i.e. use high Z material: 
need 54 m of W to stop 400 GeV µ

● Active (+passive): need 40 Tm to 
deflect 400 GeV µ outside 
acceptance

Experiment
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Neutrino backgrounds
● Neutrino interactions in the decay volume :

● After shield expect 2×104 per 2×1020 pot at atmospheric 
pressure

● Negligible at 0.01 mbar

● Neutrino interactions in the final part of the muon shield :
● Use GEANT and GENIE to simulate the CC and NC 
neutrino interactions

● CC(NC) rate of ~6(2)×105 per interaction length per 2×1020 
pot

● Use veto-station to suppress short lived

● ν
μ
 + p → X + K

L
→μπν main background

● Requiring µ-id. for one of the two decay products

 →  150 two-prong vertices in 2×1020 pot

Experiment
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Neutrino backgrounds
● Neutrino interactions in the decay volume

● ~10% of neutrino interactions in the muon shield just 
upstream of the decay volume produce Λ or K0 

●

Experiment
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Detector Concept
● Aim to reconstruct HNL decays into the final states: µ-π+, 
µ-ρ+, e-ρ+

● Require long decay volume, magnetic spectrometer, muon 
detector and electromagnetic calorimeter

p+

m-

Experiment
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Detector Concept
● 5 m diameter, 50 m length vacuum vessel
● 10 m long magnetic spectrometer with 0.5 Tm dipole 
magnet and four tracking chambers

p+

m-

Experiment
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Detector Technologies
● Dipole magnet 

● Magnet similar to LHCb design required, 
but with ~40% less iron and 3× less power

● Free aperture of ~16 m2

● Field integral ~ 0.5 Tm over 5 m length

● Vacuum tank and straw tracker
● NA62 has 10-5 mbar pressure, only 10-2 mbar 
here

● Have demonstrated gas tightness of straw 
tubes with 120 µm spatial resolution and 0.5% 
X0 material budget in long term tests

●  

LHCb dipole magnet

NA62 straws

Experiment
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Detector Technologies
● Electromagnetic calorimeter

● Shashlik technology used in LHCb would 
provide economical solution with good 
energy and time resolution

● Muon detector
● Scintillator strips with WLS fibres and 
Silicon Photomultiplier (SiPM) an 
attractive option

● Trigger and DAQ
● Requirements on both are very modest 
due to low data rate

●  

LHCb dipole magnet

NA62 straws

LHCb ECAL

Experiment
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Spectrometer resolution
● Arrange spectrometer such that multiple scattering and 
spatial resolution of straw tubes give similar contribution to 
the overall Δp/p

● For m(N
2,3

) = 1 GeV, 75% of µ-π+ decay products have 

p < 20 GeV
●

●

●

●

●

● For 0.5 Tm field integral σ(mass) ~ 40 MeV for p < 20 GeV
● Good discrimination between high mass tail from small 
number of residual K

L
→µ-π+υ and 1 GeV HNL

Experiment
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Residual Backgrounds
● K

L
 produced in the final part of the 

muon shield have very different 
pointing to the target compared to 
signal events

● Use Impact Parameter (IP) to 
further suppress K

L
 background

● IP < 1 m is 100% efficient for signal 
and leaves only a handful of  
background events

● The IP cut will also be used to reject 
backgrounds induced in neutrino 
interactions in the material 
surrounding the detector

Background

Signal

Experiment
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Expected event yield
● Integral mixing angle U2 is given by U2 = U

e
2 + U

µ
2 + U

τ
2

● Make a conservative estimate of the sensitivity by only 
considering the decay N

2,3
→µ-π+ – probes U

µ
2

● Expected number of signal events then,
● N

signal
 = npot × 2χ

cc
 × BR(U

µ
2) × ε

det
(U

µ
2)

Strongest experimental limit for M
N
 ~1 GeV at U

µ
2 = 10-7

● Would then expect τ
N
 = 1.8×10-5 s and ~12k fully 

reconstructed N→µ-π+

● For cosmologically favoured region U
µ

2 = 10-8 (τ
N
 = 

1.8×10-4 s) 
● Would expect 120 fully reconstructed events

Experiment
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Expected sensitivity
● For M

N
 < 2 GeV the proposed experiment has discovery 

potential for the cosmologically favoured region with 
10-7 < U

µ
2 < a few × 10-9

● Limit from decay channels 
with electromagnetic not
studied yet.

● Will extend search on U2 and set
limit on U

e
2

Experiment
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Status of the SPSC review
● Submitted our EOI in Oct 2013 [CERN-SPSC-2013-024 / 
SPSC-EOI-010 / arXiv:1310.1762 ]

● SPSC assigned four referees – provided answers to their 
questions [http://ship.web.cern.ch/ship/EOI/SPSC-EOI-
010_ResponseToReferees.pdf]

● SPSC discussed our proposal Jan 2015, official feedback 
: 

● Are computing our sensitivity to vector, axial vector, higgs 
portals… 

● Our potential for vt physics also being investigated

Collaboration
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A strengthening collaboration

Collaboration
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First SHiP Workshop, 10-12th June 2014
● Around 100 people met in Zurich and discussed

● Physics reach of SHiP detector
● Detector requirements and technologies

● A proto collaboration is now in place … 

Collaboration
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Conclusions
● The proposed experiment will search for NP in the largely 
unexplored domain of new, very weakly interacting 
particles with masses below the Fermi scale

● Detector is based on existing technologies
● Ongoing discussion of the beam line with CERN experts
● The discovery of a HNL would have enormous impact – 
could solve several of the significant problems of the SM

● The origin of the baryon asymmetry of the Universe
● The origin of neutrino mass 
● The results of this experiment, together with cosmological 
and astrophysical data, could be crucial to determine the 
nature of Dark Matter

● Wide range of other hidden sector physics under 
investigation

Conclusions
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