Searching for Di-Higgs → bbττ at ATLAS

Katharine Leney

20th November 2015
Overview

• Motivation for searching for di-Higgs pairs (and in the bbττ channel).
• ATLAS Run 1 HH→ bbττ analysis.
• Combination of all ATLAS HH channels.
• Prospects for HH→ bbττ searches in Run 2 and beyond.
Motivation

• TeV-scale resonances decaying to two 125 GeV Higgs bosons (h) predicted by several models, including:
 ‣ RS KK Graviton
 ‣ 2 Higgs Doublet Models (2HDM)
 ‣ Higgs portal models
 ‣ Composite models with hh resonances

• Enhancement of non-resonant di-Higgs production, e.g.
 ‣ Models with heavy top-partners
 ‣ Composite Higgs models
 ‣ Pseudo-dilaton models

• SM di-Higgs production at HL-LHC.
 ‣ Need ~3000 fb\(^{-1}\) to measure this.
 ‣ Sensitivity studies now drive upgrade design and performance requirements.
Supersymmetric extensions to Standard Model require two Higgs doublets → 5 observable Higgs bosons:

- 3 neutral (h/A/H)
- 2 charged (H±)

Assume the observed 125 GeV Higgs boson is the light Higgs (h).

Heavy Higgs (H) can decay to a pair of light Higgses (h).

Branching ratio to hh can be large, depending on parameters of model.

Range \(m_H < 500 \text{ GeV} \) theoretically favoured.

Couplings can be expressed as functions of \(\alpha \) (mixing angle) and \(\tan \beta \) (ratio of vacuum expectation values).
Di-Higgs Decay Channels

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>(\tau\tau)</th>
<th>ZZ</th>
<th>(\gamma\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>25%</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau\tau)</td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td></td>
</tr>
<tr>
<td>(\gamma\gamma)</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>
Di-Higgs Decay Channels

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>(\tau\tau)</th>
<th>ZZ</th>
<th>(\gamma\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>25%</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau\tau)</td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td></td>
</tr>
<tr>
<td>(\gamma\gamma)</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>

- **bb**
 - Largest branching ratio
 - Harder to trigger on (especially for low mass resonances and SM)

20th November 2015

Katharine Leney
Di-Higgs Decay Channels

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>ττ</th>
<th>ZZ</th>
<th>γγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td></td>
<td>25%</td>
<td>4.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ττ</td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td></td>
</tr>
<tr>
<td>γγ</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>

xxWW
- Take a hit on branching ratio to have events where W decays leptonically (~34%).
- Reconstructing hadronic W decays difficult (large QCD backgrounds).
Di-Higgs Decay Channels

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>ττ</th>
<th>ZZ</th>
<th>γγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>25%</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ττ</td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td></td>
</tr>
<tr>
<td>γγ</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>

- **Clean signature** (thanks to di-photon pair in final state).
- **Tiny branching ratios**...
Di-Higgs Decay Channels

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>(\tau\tau)</th>
<th>ZZ</th>
<th>(\gamma\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>25%</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau\tau)</td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td></td>
</tr>
<tr>
<td>(\gamma\gamma)</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>

ZZZZ
- Possibility to select clean final states with 2 or 4 leptons, but large hit on branching ratio.
Di-Higgs Decay Channels

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>ττ</th>
<th>ZZ</th>
<th>γγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>25%</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ττ</td>
<td></td>
<td></td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td></td>
</tr>
<tr>
<td>γγ</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0053%</td>
</tr>
</tbody>
</table>

bbττ
- Possibility to trigger on lepton from tau decays (58% of events).
- Fully hadronic tau-tau channels have comparable sensitivity to $e\tau_h$ and $\mu\tau_h$ channels at ATLAS.

Katharine Leney
20th November 2015
Tau Decay Characteristics

Hadronic
- Well collimated, low multiplicity jet
- Deposits in both hadronic and EM calorimeters.
- One or three tracks matching the calorimeter deposition.

τ Channels
- Di-Lepton: 41.9%
- Lepton-Hadron: 12.4%
- Hadron-Hadron: 45.8%
Tau Reconstruction and ID in ATLAS

- Taus seeded from anti-\(k_t \) jets with \(\Delta R = 0.4 \).
- Candidates required to be associated with 1 or 3 tracks within a core region \(\Delta R < 0.2 \).
- Isolated in annulus \(0.2 < \Delta R < 0.4 \).
- Various discriminating variables combined in Boosted Decision Trees to reject tau-fakes from electrons and jets.
 - BDTs trained separately for 1 and 3-prong taus.
b-Jet Decay Characteristics

b–jet tagging relies on B–hadron properties:

• Long lifetime → displaced vertex (secondary vertex, SV) typically few mm from primary vertex (PV).
• Large impact parameter (d0).
• Large B–hadron mass.
• Semi–leptonic (e/µ) decay of B–hadron
 ‣ (~40% including b→c→ℓνX decay).
b-Tagging in ATLAS

- Use outputs of 3 algorithms as inputs to MVA:
 - IP3D: Use transverse and longitudinal IP significance.
 - SV1: Reconstruct SV and use information about:
 - SV mass
 - Σ(P_T SV tracks)/Σ(P_T all tracks in jet)
 - Number of two-track vertices
 - ΔR (jet–direction, PV→SV direction)
 - JetFitter: Exploit the topology of weak B/C–hadron decay chain ($b\rightarrow c\rightarrow X$) inside jets.
Run 1 HH → bbττ Analysis

Preselection
- Select all objects in bbττ final state (ℓ + τ + 2-jets).
- Only lepton-hadron decay mode considered in Run 1.

Kinematic Cuts
- Addition rejection against Z+jets, W+jets and ttbar.

Event Categorisation
- Number of b-jets.
- p_T of τ-pair.

Resonant Search
- $m(ττ)$ cut
- Final discriminant: $m(bbττ)$.

Non-Resonant Search
- Final discriminant: $m(ττ)$

Event Preselection
- Single lepton trigger
- One isolated lepton (e/µ), $p_T > 26$ GeV
- Di-lepton veto
- One hadronic tau, $p_T > 20$ GeV
- Charge correlation between lepton and tau
- Two or more jets, $p_T > 30$ GeV

√s = 8 TeV
$\int \mathcal{L} = 20$ fb$^{-1}$
Top-Pair Production

- Contribution where the hadronic tau is real estimated from MC (Powheg).
- Fraction where hadronic W-decay fakes tau calculated separately (see later slide).

ATLAS $\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

preselection $\mu\tau_{\text{had}} + e\tau_{\text{had}}$

<table>
<thead>
<tr>
<th>Events / 10 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>1600</td>
</tr>
<tr>
<td>1400</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

m_{\tau\tau} [GeV]

- Data
- Top quark
- $Z\rightarrow\tau\tau+\text{jets}$
- Others
- Fake τ
- Systematics
- $H(300)\, hh(20\, \text{pb})$
- Non-reso. $hh(20\, \text{pb})$
Backgrounds

Z→ττ Background
- Estimated from data using embedding method:
 - Z→μμ events selected from data.
 - Muons replaced with simulated taus.
 - Missing E_T corrections applied.
- Normalised to data in 40 < M^{vis}(ττ) < 70 GeV region.
Backgrounds

Others
• Single top, di-boson, $Z \rightarrow \ell\ell$ all estimated from MC.
• Small contribution.
Fake Taus
• Fake-factor method to estimate all backgrounds where the tau is faked by a jet.
 ‣ Multijets.
 ‣ Semi-leptonic ttbar.
 ‣ W+jets.
 ‣ Z→ττ+jets (where one tau is missed).
Fake-Factor Method

\[N_{\text{Bkg}}^{\text{Est.}} = (N_{\text{data,SR}}^{\text{anti-}\tau} - N_{\text{true,SR}}^{\text{anti-}\tau}) \times \text{FF}_{\text{CR}} \]

\[\text{FF}_{\text{CR}} = \frac{N_{\text{identified-}\tau}^{\text{CR}}}{N_{\text{CR}}^{\text{anti-}\tau}} \]

- Number of anti-tau events (failing signal tau ID, but passing looser selection).
- Contribution from real taus subtracted.
- Separate FFs for each contributing process.
- Calculated as a function of \(p_T \) and \#-tracks.

\[\text{FF}(p_T, n_{\text{prong}}) = \sum_{i=bkg} R_i \text{FF}_i(p_T, n_{\text{prong}}) \]

\(R_i = \) fraction of each source
\(\text{FF}_i = \) FF of each source
Kinematic Cuts

<table>
<thead>
<tr>
<th>Kinematic Cut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse mass</td>
<td>Reject W+jets and ttbar (m_T < 60 \text{ GeV})</td>
</tr>
<tr>
<td>Missing (E_T \phi) centrality</td>
<td>Missing (E_T) should point between the lepton and tau.</td>
</tr>
<tr>
<td>Lepton-tau (p_T) balance</td>
<td>(\Delta p_T(\ell,\tau) < 20 \text{ GeV})</td>
</tr>
<tr>
<td>(m_W) vs. (m_{\text{top}})</td>
<td>Elliptical cuts on (W) and top masses</td>
</tr>
<tr>
<td>(m_{bb}) mass window</td>
<td>(90 < m_{bb} < 160 \text{ GeV})</td>
</tr>
<tr>
<td>(m_{\tau\tau}) mass window</td>
<td>(100 < m_{\tau\tau} < 150 \text{ GeV}) (only for resonant search)</td>
</tr>
</tbody>
</table>

![Graph showing kinematic cuts](image)
Kinematic Cuts

<table>
<thead>
<tr>
<th>Transverse mass</th>
<th>Reject W+jets and ttbar (m_T < 60 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing (E_T \phi) centrality</td>
<td>Missing (E_T) should point between the lepton and tau.</td>
</tr>
<tr>
<td>Lepton-tau (p_T) balance</td>
<td>(p_T(\ell) < p_T(\tau) + 20 \text{ GeV})</td>
</tr>
<tr>
<td>(m_W) vs. (m_{\text{top}})</td>
<td>Elliptical cuts on W and top masses</td>
</tr>
<tr>
<td>(m_{bb}) mass window</td>
<td>(90 < m_{bb} < 160 \text{ GeV})</td>
</tr>
<tr>
<td>(m_{\tau\tau}) mass window</td>
<td>(100 < m_{\tau\tau} < 150 \text{ GeV}) (only for resonant search)</td>
</tr>
</tbody>
</table>

Leptons from W decay tend to be harder than those from taus because of number of accompanying neutrinos.
Kinematic Cuts

<table>
<thead>
<tr>
<th>Kinematic Cut</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse mass</td>
<td>Reject $W+$jets and $ttbar$ $m_T < 60$ GeV</td>
</tr>
<tr>
<td>m_{jjb} mass window</td>
<td>$90 < m_{bb} < 160$ GeV</td>
</tr>
<tr>
<td>$m_{\tau\tau}$ mass window</td>
<td>$100 < m_{\tau\tau} < 150$ GeV (only for resonant search)</td>
</tr>
<tr>
<td>m_W vs. m_{top}</td>
<td>Elliptical cuts on W and top masses</td>
</tr>
<tr>
<td>Missing E_T centrality</td>
<td>Missing E_T should point between the lepton and tau.</td>
</tr>
<tr>
<td>Lepton-tau p_T balance</td>
<td>$\Delta p_T(\ell,\tau) < 20$ GeV</td>
</tr>
</tbody>
</table>

Diagram:
- $m(jj)$ → W mass
- $m(jjb) → top$ mass
- 2D cut on m_{top} vs m_W
Kinematic Cuts

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse mass</td>
<td>Reject W+jets and ttbar, $m_T < 60$ GeV</td>
</tr>
<tr>
<td>Missing E$_T$ φ centrality</td>
<td>Missing E$_T$ should point between the lepton and tau.</td>
</tr>
<tr>
<td>Lepton-tau p_T balance</td>
<td>$\Delta p_T(\ell, \tau) < 20$ GeV</td>
</tr>
<tr>
<td>m_W vs. m_{top}</td>
<td>Elliptical cuts on W and top masses</td>
</tr>
<tr>
<td>m_{bb} mass window</td>
<td>$90 < m_{bb} < 160$ GeV</td>
</tr>
<tr>
<td>$m_{\tau\tau}$ mass window</td>
<td>$100 < m_{\tau\tau} < 150$ GeV (only for resonant search)</td>
</tr>
</tbody>
</table>

![Graph showing kinematic cuts](image)
Kinematic Cuts

<table>
<thead>
<tr>
<th>Transverse mass</th>
<th>Reject W+jets and ttbar $m_T < 60$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing E_T φ centrality</td>
<td>E_T should point between the lepton and tau.</td>
</tr>
<tr>
<td>Lepton-tau p_T balance</td>
<td>$\Delta p_T(\ell, \tau) < 20$ GeV</td>
</tr>
<tr>
<td>m_W vs. m_{top}</td>
<td>Elliptical cuts on W and top masses</td>
</tr>
<tr>
<td>m_{bb} mass window</td>
<td>$90 < m_{bb} < 160$ GeV</td>
</tr>
<tr>
<td>$m_{\tau\tau}$ mass window</td>
<td>$100 < m_{\tau\tau} < 150$ GeV (only for resonant search)</td>
</tr>
</tbody>
</table>

Graph

- **ATLAS $\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$**
- Preselection
- $\mu\tau_{had} + e\tau_{had}$

<table>
<thead>
<tr>
<th>Category</th>
<th>Color</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Black</td>
<td>Data</td>
</tr>
<tr>
<td>Top quark</td>
<td>Green</td>
<td>Top quark</td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau +$ jets</td>
<td>Blue</td>
<td>$Z \rightarrow \tau\tau +$ jets</td>
</tr>
<tr>
<td>Others</td>
<td>Yellow</td>
<td>Others</td>
</tr>
<tr>
<td>Fake τ</td>
<td>Cyan</td>
<td>Fake τ</td>
</tr>
<tr>
<td>Systematics</td>
<td>Grey</td>
<td>Systematics</td>
</tr>
<tr>
<td>Non-reso. hh</td>
<td>Red</td>
<td>Non-reso. hh</td>
</tr>
<tr>
<td>H(300) hh</td>
<td>Red</td>
<td>H(300) hh</td>
</tr>
</tbody>
</table>

- $m_{\tau\tau}$ reconstructed using Missing Mass Calculator (MMC), arXiv: 1012.4686
- Weights the kinematically allowed τ decay solutions by a likelihood function.
Event Categorisation

Preselection

Kinematic Cuts

Event Categorisation

One or two b-tagged jets

Tau pair p_T is low (< 100 GeV)
or high (> 100 GeV)
Non-Resonant Analysis

- Use $m_{\tau\tau}$ as final discriminant

<table>
<thead>
<tr>
<th></th>
<th>Cross-section (upper limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>1.3 pb</td>
</tr>
<tr>
<td>Observed</td>
<td>1.6 pb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cross-section (upper limit) relative to SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>130</td>
</tr>
<tr>
<td>Observed</td>
<td>160</td>
</tr>
</tbody>
</table>

ATLAS $\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

- Data
- Top quark
- $Z\rightarrow\tau\tau$ + jets
- Others
- Fake τ
- Systematics
- Non-reso. hh(10 pb)
Resonant Analysis

• Apply scale factors m_h/m_{bb} and $m_h/m_{\tau\tau}$ to 4-momenta of bb and $\tau\tau$ systems.
 ‣ $m_h = 125$ GeV (SM Higgs)
• Improves mass resolution of heavy resonances.
Resonant Analysis

\[\text{ATLAS} \sqrt{s} = 8 \text{ TeV, } 20.3 \text{ fb}^{-1} \]

\[hh \rightarrow bb\tau\tau \text{ (} bb\mu\tau_{\text{had}} + bb\nu\tau_{\text{had}} \text{)} \]

\[\sigma(gg\rightarrow H) \times BR(H\rightarrow hh) \text{ [pb]} \]

- **Observed**
- **Expected**
- \(\pm 1\sigma \) expected
- \(\pm 2\sigma \) expected

\[m_H \text{ [GeV]} \]

20th November 2015

Katharine Leney
Combination With Other Channels

\[\sigma (gg \rightarrow H) \times \text{BR}(H \rightarrow hh) \text{ [pb]} \]

ATLAS \(\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1} \)

- Observed
- Expected
- \(\pm 1\sigma \) expected
- \(\pm 2\sigma \) expected
- \(bb\tau\tau \) exp
- \(WW\gamma\gamma \) exp
- \(bb\gamma\gamma \) exp
- \(bbbb \) exp

![Graph showing the combination of Higgs production and decay rates with other channels.](image)
Constraints on 2HDM Models

hMSSM
Lighter h boson has a mass of 125 GeV. Non-observation of superparticles at the LHC indicates that SUSY-breaking scale $M_S \gtrsim 1$ TeV. Approx. “model-independent” approach of the MSSM Higgs sector.

low-tb-high:
Lighter h boson has a mass of 125 GeV. Preferred region is low tan-β and heavy SUSY.

LHCHXSWG-2015-002
Expected Improvements For Run 2

LHC Run 2:
- 2015-2018
- $\sqrt{s} = 13$ TeV
- 100 fb$^{-1}$
- $\mu = 50$

Access processes with smaller cross-sections and/or higher mass

![Graph showing luminosity ratios](image)

2015 Summary:
- 4 fb$^{-1}$ collected (3.34 fb$^{-1}$ after data quality requirements).
- Expect to have slightly better sensitivity to $X \rightarrow hh \rightarrow bb\tau\tau$ process than in Run 1 with the 2015 dataset.
Expected Improvements For Run 2

- Include fully hadronic tau-tau decay channel.
 ‣ Similar sensitivity to lepton-hadron channel.
 ‣ Fully leptonic channel adds very little, but can be useful as a cross-check.

- Further analysis optimisation.

- Improved object identification for Run 2.
Expected Improvements For Run 2

- Include fully hadronic tau-tau decay channel.
 - Similar sensitivity to lepton-hadron channel.
 - Fully leptonic channel adds very little, but can be useful as a cross-check.

- Further analysis optimisation.

- Improved object identification for Run 2.
 - Taus

Run 1

ATLAS

Data 2012, $\sqrt{s}=8\text{ TeV}$

Run 2

ATLAS Simulation

Preliminary

$P_T \geq 20 \text{ GeV}$

20th November 2015

Katharine
Expected Improvements For Run 2

- Include fully hadronic tau-tau decay channel.
 - Similar sensitivity to lepton-hadron channel.
 - Fully leptonic channel adds very little, but can be useful as a cross-check.

- Further analysis optimisation.

- Improved object identification for Run 2.
 - Taus
 - b-jets

ATLAS Simulation Preliminary

\[\sqrt{s} = 13 \text{ TeV}, \bar{t}t \]

Run 1

- ATLAS Preliminary
- \(p_T^{\text{jet}} > 20 \text{ GeV}, |\eta| < 2.5 \)

Run 2

- MV1
- \(\varepsilon_b = 70\% \)

Jet \(p_T \) [GeV]

- Light-flavour jets
- \(c \) jets
- \(b \) jets
Expected Improvements For Run 2

- Dedicated analysis using sub-structure techniques to reconstruct boosted tau and b-jet pairs will follow later in 2016.

- Current analysis has a natural end-point of ~1 TeV, where $\Delta R(\tau,\tau) \sim 0.4$ and tau ID fails.
 - Normal tau ID relies on an isolation annulus ($0.2 < \Delta R < 0.4$) so fails if the taus are too close together.
 - Dedicated boosted tau-pair finding algorithm to recover these events and extend mass reach of the analysis.

- b-tagging performance also degrades as a function of $\Delta R(b,b)$.
 - Less of a ‘cliff’ than tau ID.
 - Dedicated tagger for finding boosted pairs of b-jets developed.
 - $HH\rightarrow bbbb$ analysis shows significant gains when using it.
HL-LHC

QUITE A LONG WAY OFF
(2023-2035-ISH)
SM Higgs Pair Production
SM Higgs Pair Production
• Higgs self-coupling crucial check of EWSB mechanism.

• Possibly *the* most challenging measurement at the LHC!

• Direct measurement of the Higgs trilinear self-coupling (λ_{hhh}) can be made by studying Higgs pair-production.

• Need to dis-entangle top box-diagram and diagram containing the HHH vertex...

• Destructive interference with diagrams not containing the HHH vertex.
 - Box diagram dominates in boosted events.
 - Absolutely crucial to push down to lower p_T’s in order to access λ_{hhh}.

20th November 2015

Katharine Leney
SM Higgs: Pair Production

- For $\lambda_{HHH}/\lambda_{hhh}^{\text{SM}} = 0/1/2$, cross-section = 71/34/16 fb.
- With 3000 fb$^{-1}$ a $\sim 3\sigma$ combined measurement by ATLAS+CMS should be possible.
SM HH→bbττ Sensitivity Study

• Truth-level, `cut-and-count’ study for first estimate of sensitivity.
 ‣ Detector response parameterised.
 ‣ More sophisticated analyses (using MVAs) will be necessary.

• Assume 3000 fb\(^{-1}\) data, √s = 14 TeV, and 140 proton-proton collisions per bunch-crossing.

• All tau-tau decay modes considered:
 ‣ Fully leptonic (τ\(ℓ\)τ\(ℓ\))
 ‣ Semi-leptonic (τ\(ℓ\)τ\(h\))
 ‣ Fully hadronic (τ\(h\)τ\(h\))

• SM Higgs processes that have been negligible backgrounds in the new physics searches so far become more important.
 ‣ e.g. VH, ttV, ttH

• Higgs bosons produced by λ\(_{HHH}\) process have low \(p_T\).
 ‣ Those produced via top box-diagram are more boosted.
 ‣ Lower \(p_T\) objects harder to separate from multi-jets backgrounds.
 ‣ Need to find the right balance...
Event Selection

<table>
<thead>
<tr>
<th>Event Selection Criteria</th>
<th>Example Cut Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{bb} mass window</td>
<td>$95 < m_{bb} < 145$ GeV</td>
</tr>
<tr>
<td>$m_{\tau\tau}$ mass window</td>
<td>$90 < m_{\tau\tau} < 160$ GeV</td>
</tr>
<tr>
<td>$p_T(bb)$</td>
<td>$p_T(bb) > 200$ GeV</td>
</tr>
<tr>
<td>bb-pair separation</td>
<td>$\Delta R(bb) < 1.0$</td>
</tr>
<tr>
<td>Transverse mass</td>
<td>$m_T < 80$ GeV</td>
</tr>
<tr>
<td>Stransverse mass</td>
<td>$m_{T2} > 180$ GeV</td>
</tr>
</tbody>
</table>

* Slight variations in exact cut values between channels
Event Selection

<table>
<thead>
<tr>
<th>Example Cut Value*</th>
<th>m_{bb} mass window</th>
<th>95 < m_{bb} < 145 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m_{\tau\tau} mass window</td>
<td>90 < m_{\tau\tau} < 160 GeV</td>
</tr>
<tr>
<td></td>
<td>p_T(bb)</td>
<td>p_T(bb) > 200 GeV</td>
</tr>
<tr>
<td></td>
<td>bb-pair separation</td>
<td>\Delta R(bb) < 1.0</td>
</tr>
<tr>
<td></td>
<td>Transverse mass</td>
<td>m_T < 80 GeV</td>
</tr>
<tr>
<td></td>
<td>Stransverse mass</td>
<td>m_{T2} > 180 GeV</td>
</tr>
</tbody>
</table>

* Slight variations in exact cut values between channels
Event Selection

<table>
<thead>
<tr>
<th>Example Cut Value*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{bb} mass window</td>
<td>$95 < m_{bb} < 145$ GeV</td>
</tr>
<tr>
<td>$m_{\tau\tau}$ mass window</td>
<td>$90 < m_{\tau\tau} < 160$ GeV</td>
</tr>
<tr>
<td>$p_T(bb)$</td>
<td>$p_T(bb) > 200$ GeV</td>
</tr>
<tr>
<td>bb-pair separation</td>
<td>$\Delta R(bb) < 1.0$</td>
</tr>
<tr>
<td>Transverse mass</td>
<td>$m_T < 80$ GeV</td>
</tr>
<tr>
<td>Stransverse mass</td>
<td>$m_{T2} > 180$ GeV</td>
</tr>
</tbody>
</table>

* Slight variations in exact cut values between channels

Stransverse mass: Generalisation of the transverse mass when applied to signatures with two (or more) invisible particles in the final state.

Prospects for Measuring λ_{HHH} at the HL-LHC

<table>
<thead>
<tr>
<th>Channel</th>
<th>Significance</th>
<th>Combined in channel</th>
<th>Total combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e + \text{jets}$</td>
<td>0.31</td>
<td>0.43</td>
<td>0.60</td>
</tr>
<tr>
<td>$\mu + \text{jets}$</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau_{\text{had}}\tau_{\text{had}}$</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
</tbody>
</table>

- Use of more sophisticated analysis techniques can improve sensitivity.
- Combination across many channels will be necessary.
- Large correlation between total di-Higgs production cross-section and λ_{HHH}.
 ‣ λ_{HHH} better studied using shape analysis of key observables.

σ / σ_{SM} as a function of λ / λ_{SM}

$\tau_\ell\tau_\ell$ channels order of magnitude less sensitive than $\tau_\ell\tau_h$ or $\tau_h\tau_h$ channels.
Summary & Conclusions

• Di-Higgs physics is a new and exciting avenue for searching for new physics.
 ‣ Many new physics models predict enhanced rates, either as resonant or non-resonant production.
 ‣ Also predicted by the SM where it will be a crucial test of the Higgs mechanism.
 ‣ $b\bar{b}\tau\tau$ is a promising channel, particularly in the SM/lower mass/non-resonant regime.

• Run 1 searches showed no signal in the $b\bar{b}\tau\tau$, or any other channel.
 ‣ Limits set on resonant and non-resonant HH production.

• Will significantly extend this reach during the LHC Run 2.
 ‣ Even with 2015 data alone should do better than Run 1.
 ‣ Extra analysis optimisations will improve the sensitivity further, particularly at higher masses.

• The $b\bar{b}\tau\tau$ channel is a promising one for measuring di-Higgs production and λ_{HHH} at the HL-LHC.
Back Up
Obligatory ATLAS Detector Slide

20th November 2015

Katharine Leney
Combination With Other Channels

Local ρ_0

$\sqrt{s} = 8$ TeV 20.3 fb$^{-1}$

ATLAS
Resonant Analysis - Comparison with CMS

ATLAS: Only $\tau_\ell \tau_h$ channels
CMS: $\tau_\ell \tau_h$ and $\tau_h \tau_h$ channels.

ATLAS: $\sigma \times \text{BR}(H \rightarrow hh)$
CMS: $\sigma \times \text{BR}(H \rightarrow hh \rightarrow bb\tau\tau)$

Limit at 300 GeV:
ATLAS: 3 pb \times BR(hh \rightarrow bb$\tau\tau$) = 0.21 pb
CMS: 0.2 pb
CMS hh→bbττ Results

Figure 8: Upper limits at 95% CL on the H→hh→bbττ cross section times branching fraction for the τ→µτ (top left), τ→eτ (top right), τ→ττ (bottom left), and for final states combined (bottom right)
ATLAS H\rightarrowhh\rightarrow bb$\gamma\gamma$

$\int\text{L}dt = 20 \text{ fb}^{-1} \text{ at } \sqrt{s} = 8 \text{ TeV}$

- Observed 95% CL Limit
- Expected Limit $\pm 1\sigma$
- Expected Limit $\pm 2\sigma$
- Type I 2HDM:
 $\tan\beta = 1$, $\cos(\beta-\alpha) = -0.05$
ATLAS H → hh → bbb

ATLAS
\[\sqrt{s} = 8 \text{ TeV} \int L dt = 19.5 \text{ fb}^{-1} \]

- **Observed Limit (95% CL)**
- **Expected Limit (95% CL)**
- **Expected ±1σ**
- **Expected ±2σ**

\[\Gamma_H = 1 \text{ GeV} \]
2HDM Models

• Higgs sector of 2HDM models described by parameters:
 ‣ 4 Higgs masses
 ‣ tan-β (ratio of vacuum expectation values, vev)
 ‣ α (mixing between the two neutral CP even states h,H).

• Several different ‘types’ of 2HDM:
 ‣ Type I: One doublet couples to V(“fermiophobic”), one to fermions.
 ‣ Type II: “MSSM like” model, one doublet couples to up-type quarks, one to down-type quarks.
 ‣ Type III: “Lepton-specific” model, Higgs bosons have same couplings to quarks as type I and to leptons as in type II.
 ‣ Type IV: “Flipped” model, Higgs bosons have same couplings to quarks as in type II and to leptons as in type I.

• For more specific MSSM models m_h fully determined at tree level by m_A and tan-β.
Prospects for Measuring λ_{HHH} at the HL-LHC

<table>
<thead>
<tr>
<th>Signal Significance</th>
<th>had-had</th>
<th>lep-had (e channel)</th>
<th>lep-had (μ channel)</th>
<th>lep-lep (ee channel)</th>
<th>lep-lep ($\mu\mu$ channel)</th>
<th>lep-lep ($e\mu$ channel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S/\sqrt{B} (\lambda = 0\lambda_{\text{SM}})$</td>
<td>0.66</td>
<td>0.49</td>
<td>0.45</td>
<td>0.044</td>
<td>0.055</td>
<td>0.091</td>
</tr>
<tr>
<td>$S/B (\lambda = 0\lambda_{\text{SM}})$</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
<td>0.00092</td>
<td>0.0016</td>
<td>0.0017</td>
</tr>
<tr>
<td>$S/\sqrt{B} (\lambda = 1\lambda_{\text{SM}})$</td>
<td>0.47</td>
<td>0.35</td>
<td>0.33</td>
<td>0.033</td>
<td>0.036</td>
<td>0.062</td>
</tr>
<tr>
<td>$S/B (\lambda = 1\lambda_{\text{SM}})$</td>
<td>0.016</td>
<td>0.016</td>
<td>0.017</td>
<td>0.00069</td>
<td>0.0010</td>
<td>0.0012</td>
</tr>
<tr>
<td>$S/\sqrt{B} (\lambda = 2\lambda_{\text{SM}})$</td>
<td>0.29</td>
<td>0.25</td>
<td>0.23</td>
<td>0.023</td>
<td>0.025</td>
<td>0.044</td>
</tr>
<tr>
<td>$S/B (\lambda = 2\lambda_{\text{SM}})$</td>
<td>0.010</td>
<td>0.012</td>
<td>0.011</td>
<td>0.00048</td>
<td>0.00074</td>
<td>0.00084</td>
</tr>
<tr>
<td>$S/\sqrt{B} (\lambda = 10\lambda_{\text{SM}})$</td>
<td>1.0</td>
<td>0.56</td>
<td>0.52</td>
<td>0.062</td>
<td>0.072</td>
<td>0.14</td>
</tr>
<tr>
<td>$S/B (\lambda = 10\lambda_{\text{SM}})$</td>
<td>0.036</td>
<td>0.027</td>
<td>0.026</td>
<td>0.0013</td>
<td>0.0021</td>
<td>0.0027</td>
</tr>
</tbody>
</table>
The Unbearable Lightness of M_H...

$M_H^2 = M_{\text{bare}}^2 + (\text{Radiative corrections, top loop dominates: } \sim m_t^2 \Lambda^2) + (\Lambda^2: \text{the energy scale at which the SM breaks down})$

Observed mass (~125 GeV)

Bare mass to cancel radiative corrections

Need a cancellation to 33 digits if Λ is at the Planck scale (~10^{19} GeV) - fine tuning!

Very strong motivation for new physics at TeV scale!