FTK: a Fast Track Trigger for ATLAS

Lauren Tompkins
Lessons from Run I

- Triumphant discovery of a Higgs boson
Lessons from Run I

- Nothing else!
Lessons from Run I

• Nothing else!
Lessons from Run I

• Nothing else!
Lessons from Run I

• Nothing else!
Looking to 2015 and beyond

- Measure the properties of the new boson
 - b and tau measurements critical!
- Search wider, farther and deeper for new physics
 - Stop, sbottom and stau searches have weakest limits
 - Must keep flexibility for more exotic signatures, e.g. resonances decaying to many heavy qs
- Heavy fermions may be key to this program
Looking to 2015 and beyond

- Measure the properties of the new boson
 - b and tau measurements critical!
- Search wider, farther and deeper for new physics
 - Stop, sbottom and stau searches have weakest limits
 - Must keep flexibility for more exotic signatures, e.g. resonances decaying to many heavy qs
- Heavy fermions may be key to this program

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>$m_H = 125.5$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>(\mu = 1.55^{+0.33}_{-0.28})</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^* \rightarrow 4l$</td>
<td>(\mu = 1.43^{+0.40}_{-0.35})</td>
</tr>
<tr>
<td>$H \rightarrow WW^* \rightarrow l\ell\nu\nu$</td>
<td>(\mu = 0.99^{+0.31}_{-0.28})</td>
</tr>
<tr>
<td>Combined $H \rightarrow \gamma\gamma, ZZ^, WW^$</td>
<td>(\mu = 1.33^{+0.21}_{-0.18})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total uncertainty $\pm 1\sigma$ on μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ(stat)</td>
</tr>
</tbody>
</table>

- ATLAS-CONF-2012-160
- ATLAS-CONF-2013-079
- Preliminary

```
\begin{align*}
\text{Signal strength (}\mu) & = 0.2^{+0.7}_{-0.6} \approx 1.7 \\
\text{Preliminary} & \approx 0.4 \approx 0.5 \\
\text{Preliminary} & < 0.1 \approx 0.1 \\
\text{SUSY} & = 7 \text{ TeV} \int Ldt = 4.6-4.8 \text{ fb}^{-1} \\
\text{SUSY} & = 8 \text{ TeV} \int Ldt = 13-20.7 \text{ fb}^{-1}
\end{align*}
```
Looking to 2015 and beyond

- Measure the properties of the new boson
 - b and tau measurements critical!
- Search wider, farther and deeper for new physics
 - Stop, sbottom and stau searches have weakest limits
- Must keep flexibility for more exotic signatures, e.g. resonances decaying to many heavy qs
 - Heavy fermions may be key to this program
Carrying out the Physics Program

• Need to be able to identify:
 • 3rd generation particles: taus, b-quarks
 • Displaced vertices from B-hadron decays
 • 1- and 3-prong tau decays
 • Leptons from electroweak decays:
 • Isolated electrons and muons
 • Jets and Missing Energy
• Tracking is critical!
Carrying out the Physics Program

• Need to be able to identify:
 • 3rd generation particles: taus, b-quarks
 • Displaced vertices from B-hadron decays
 • 1- and 3-prong tau decays
 • Leptons from electroweak decays:
 • Isolated electrons and muons
 • Jets and Missing Energy
 • Tracking is critical!
Carrying out the Physics Program

- Need to be able to identify:
 - 3rd generation particles: taus, b-quarks
 - Displaced vertices from B-hadron decays
 - 1- and 3-prong tau decays
 - Leptons from electroweak decays:
 - Isolated electrons and muons
 - Jets and Missing Energy
 - Tracking is critical!
Carrying out the Physics Program

- Need to be able to identify:
 - **3rd generation particles:** taus, b-quarks
 - Displaced vertices from B-hadron decays
 - 1- and 3-prong tau decays
 - Leptons from electroweak decays:
 - Isolated electrons and muons
 - Jets and Missing Energy
 - Tracking is critical!
The challenge
The challenge
Run II and III conditions

7 TeV 8 TeV ~13 TeV 13-14 TeV
April 15th 2012, 25 reconstructed vertices, $Z \rightarrow \mu\mu$ candidate event
Challenges

CMS, 78 reconstructed vertices
ATLAS
ATLAS
ATLAS Trigger System

Rate [Hz] Latency

40 x 10^6 720 x 10^6
bunch crossings interactions

LVL1 Trigger
(Hardware)

CTP

CALO MUON TRACKING

Pipeline memories

High Level Trigger
(Software)

LVL2

2 kHz

2 kHz

~1-10 ms
(variable)

LVL3

processor farm

< 2 s

Data Storage

~10-100 MB/s

~2 μs
(fixed)

75 kHz

200 Hz
Tracking at High Lumi is Tricky

- Huge combinatorial problem, very non linear with number of interactions
 - Use algorithms in software run on CPUs: slow!
- FTK solves these problems with a hardware based approach
 - Full detector reconstruction in less than 100 microseconds
Conceptual Design

- Divide the detector η-ϕ towers: **Parallelize** the problem

- Convert clusters into coarse resolution hits: **Reduce** the data volume

- Compare hits to many pre-stored track patterns simultaneously: **Eliminate** costly loops

- Use a linearized fit for track candidates: **Simplify** algorithms

- All implemented in FPGAs or custom ASICs: **Hardware** solution
System Architecture

64 η-ϕ towers contained in 8 core crates
FTK in the ATLAS Trigger System
Stage 1: Clustering

- Receive data from silicon detectors
- Cluster pixel hits using sliding window algorithm in FPGA
- FPGAs on clustering mezzanines on Data Formatter boards
Stage 1: Data Formatting

- Route clusters to FTK eta-phi towers
Stage 1: Data Formatting

- Route clusters to FTK eta-phi towers
Stage 1: Data Formatting

- Route clusters to FTK eta-phi towers
Stage 1: Data Formatting

- Implemented in ATCA crates with full mesh backplane
- 32 DF boards in 4 crates
- Each DF connects to 2 towers
Stage 1: Data Formatting

- Implemented in ATCA crates with full mesh backplane
- 32 DF boards in 4 crates
- Each DF connects to 2 towers
Stage 1: Data Formatting

- Implemented in ATCA crates with full mesh backplane
- 32 DF boards in 4 crates
- Each DF connects to 2 towers
Stage 2: Pattern Recognition

- Hits are ganged into Super Strips (SS)
 - Roughly 15x36 pixels/16 strips per SS @ 70 int/x-ing
- Custom associative memory chips are used to compare hits to $O(10^9)$ patterns simultaneously
 - Pattern matching finished as soon as all hits are read
- Matched patterns (Roads) are then fit to reject bad roads
 - Most matches are fake, need fits to reduce bad rate
Pattern Recognition Associative Memory

SS Busses by layer

Patterns

SSID
Pattern Recognition Associative Memory

- Allows hits arriving at different times (but same event) to be compared!

animation by Fermilab engineer Jim Hoff
Refinements

- Majority Logic: Only require N out of M layers have a match
 - Gains efficiency
- Variable Resolution Patterns (Don’t Care Bits)
 - Reduces the number of patterns and fake matches

No variable resolution: 3 patterns needed

1 bit variable resolution: 1 pattern needed

3 bit variable resolution: 1 pattern with 1/16th volume

- Number of don’t care bits set on a layer by layer, pattern by pattern basis
Refinements

• Majority Logic: Only require N out of M layers have a match
 • Gains efficiency

• Variable Resolution Patterns (Don’t Care Bits)
 • Reduces the number of patterns and fake matches

• Number of don’t care bits set on a layer by layer, pattern by pattern basis
Refinements

- Majority Logic: Only require N out of M layers have a match
 - Gains efficiency

- Variable Resolution Patterns (Don’t Care Bits)
 - Reduces the number of patterns and fake matches

- Number of don’t care bits set on a layer by layer, pattern by pattern basis
Refinements

- Majority Logic: Only require N out of M layers have a match
 - Gains efficiency

- Variable Resolution Patterns (Don’t Care Bits)
 - Reduces the number of patterns and fake matches

- Number of don’t care bits set on a layer by layer, pattern by pattern basis
• AM Chips: 64 nm custom associative memory chips
 • 8 Layer (Pix + 4 axial SCT + 1 stereo SCT)
 • 3-6 bits for variable resolution patterns
 • Low power design: ~2W/chip, a factor 30-50 reduction in power/pattern/MHz over predecessor SVT chip

• Functionality demonstrated in small area chips
 • 8k patterns
Processing Unit

- AMChips found in Processing Unit:
 - AMboard + AUX Card
- Each AMBoard is composed of 4 LAMBS with AM chips
 - Each LAMB-FTK will contain 16 AMChips, \(\sim 10^6 \) patterns/LAMB
- AM Board + AUX communicate through P3 Connector
 - Successfully tested 2GBps transfer
The AUX Card

• The AM Board has multifunctional Auxiliary Card
 • VME Control through main board through P2 connector
• Converts clusters to SS
• Receives matched road IDs and fetches full resolution hits
• Performs 8 layer fit to reject bad roads
• Sends roads to board for 12 layer fit
Linearized Track Fitting

- Fit constants predetermined and defined by sector
- FPGAs multiply and add coordinates by constants to get χ^2
- If a layer is missing, missing hit position is guessed so χ^2 can be calculated
- Keep roads with at least 1 good track
- Fit 1 track / ns (1 track every 5 ps for full system)!

$$\chi_i = \sum_{j=1}^{N_c} S_{ij} x_j + h_i; \ i = 1, \ldots, N_\chi$$
Stage 3: 12-layer Track Fitting

• Use constants precomputed from linearized constraints to guess hit coordinates

\[x'_i = \sum_{j=1}^{11} H_{ij} x_j + g_i; i = 1, \ldots, N_X \]

• Find matching SS

• Refit with good hits to find best \(\chi^2 \) and track parameters

• Good tracks, with parameters, hits and errors are sent to final crate for formatting for L2
FTK to Level 2

- FTK to Level 2 Interface Crate connects FTK to HLT
 - Formats data for HLT
 - Also does monitoring and control
- Uses dual-star ATCA crate
 - Will allow for local trigger processing (primary vertex finding, beamspot, MET, etc.) in the future
Performance

• FTK has a detailed simulation of system logic for design and performance studies
 • Bit-level emulation in progress

• Performance shown in Technical Design Report from May 2013
 • https://cds.cern.ch/record/1552953/
 • Uses only 11 silicon layer (no IBL)
Efficiencies & Fake Rates

- 93-94% efficiency with respect to offline tracks
- 3% fake rate at central eta, up to 10% at high eta
- Actively working in improving efficiencies and fake rates
Performance: Resolutions

- Similar resolution to offline at low pT, 2x worse at highest pT
 - Improved with some clustering changes (not shown here)
Performance: B-tagging

- Use simple 2D Impact parameter significance b-tagger
- For 80% offline point can get 70% or higher relative FTK efficiency
 - Even better relative performance when IBL is included
Performance: B-tagging

- Use simple 2D Impact parameter significance b-tagger
- For 80% offline point can get 70% or higher relative FTK efficiency
 - Even better relative performance when IBL is included
Performance: B-tagging

- Use simple 2D Impact parameter significance b-tagger
- For 80% offline point can get 70% or higher relative FTK efficiency
 - Even better relative performance when IBL is included
Performance: Taus

- Current tau algorithms run calorimeter selection first, then tracking because of ROI tracking costs.
- Replace L2 with simple track-based selection.
- Then run more sophisticated calorimeter algorithms (not shown here).
- Need to re-optimize offline in this case!
Performance: Taus

- Current tau algorithms run calorimeter selection first, then tracking because of ROI tracking costs.
- Replace L2 with simple track-based selection.
- Then run more sophisticated calorimeter algorithms (not shown here).
- Need to re-optimize offline in this case!
Performance: Taus

- Current tau algorithms run calorimeter selection first, then tracking because of ROI tracking costs.
- Replace L2 with simple track-based selection.
- Then run more sophisticated calorimeter algorithms (not shown here).
- Need to re-optimize offline in this case!
Performance: Taus

- Current tau algorithms run calo selection first, then tracking b/c of ROI tracking costs
- Replace L2 with simple track based selection
- Then run more sophisticated calorimeter algorithms (not shown here)
- Need to re-optimize offline in this case!
Performance: Primary Vertex Finding

- Can find PV with high efficiency with FTK tracks
 - Useful for multi-object association
- Can also do vertex counting
 - May need optimization to get better performance w.r.t offline
Timing Simulation

- Detailed timing studies based on per-word processing times for entire system
- 100 microsecond latency achievable at 70 interactions per crossing!
Summary of Prototype tests

- AMChips: Custom cells tested and works well!
- Processing Unit:
 - High speed communication between AUX and AMB successful
 - On board HS communication for AUX successful
 - Cooling tests for AMB underway to determine crate configuration
- Clustering Mezzanine:
 - Data transfer (SCT) tested in with collision data
 - Connection to DF through SMD connector tested
- Data Formatter:
 - Onboard and backplane data transfer tested to 10Gbps
FTK Status and Plans

Install Dual Output HOLAs for Vertical Slice

Prototypes of all boards, TDR Due

System integration tests

Install Full FTK

- Winter 2012
- Summer 2012
- Spring 2013
- Summer 2013
- 2014
- 2015
- 2016+

- Fall Run Vertical Slice in ATLAS Partition, Observer mode
- ATLAS Approval of TDR Prototype testing
- Cover barrel for commissioning tests, do full production of AM Boards
Conclusions

• LHC Run II & III will have a lot of challenging and exciting physics to be explored
 • Using tracking information in the trigger will increase our sensitivity to heavy flavor objects
• FTK uses a hardware solution to solve the problems of tracking at high luminosity
 • Good performance with respect to offline tracking
 • Trigger chains under development
• FTK is an approved ATLAS & LHCC project
 • All that remains is the Resource Review Board
• Installation begins in 2015, with full coverage most likely in 2016.
Back-up
LHC Plan*

- Experiments request: 25 ns running with no significant 50ns dataset
- Machine reality: 50ns is easier/safer and will be used for 13 TeV commissioning before moving to 25 ns.
- Plan:
 - Low intensity for first 2 months, low number of bunches
 - Intensity ramp up with 50 ns (1-2months)
 - 50ns nominal running at <mu> of 40 to characterize machine
 - 25ns commissioning
- May have to run at lumi-leveled 50ns operation if 25ns has problems
- Stable operations possibilities:

<table>
<thead>
<tr>
<th>Scheme</th>
<th>(N_b)</th>
<th>ppb ((10^{11}))</th>
<th>(\beta^* ,[cm])</th>
<th>emittance [(\mu m)]</th>
<th>peak</th>
<th>pile-up</th>
<th>(\mathcal{L} ,[fb^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ns</td>
<td>2760</td>
<td>1.15</td>
<td>55/43/189</td>
<td>3.75</td>
<td>9.3e33</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>25 ns BCMS</td>
<td>2760</td>
<td>1.15</td>
<td>45/43/189</td>
<td>1.9</td>
<td>1.7e34</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>50 ns</td>
<td>1380</td>
<td>1.65</td>
<td>42/43/189</td>
<td>2.3</td>
<td>1.6e34</td>
<td>87</td>
<td>40†</td>
</tr>
<tr>
<td>50 ns BCMS</td>
<td>1380</td>
<td>1.6</td>
<td>38/43/189</td>
<td>1.6</td>
<td>2.3e34</td>
<td>138</td>
<td>40†</td>
</tr>
</tbody>
</table>

See Talk by O. Bruning for details

*Evian Summary †Lumi-leveled
AM technological evolution

- **(90’s)** Full custom **VLSI chip** - 0.7µm (INFN-Pisa)
- **128 patterns, 6x12bit words each, 30MHz**

Alternative **FPGA** implementation of SVT AM chip

G Magazzù, 1st std cell project presented @ LHCC (1999)

Standard Cell 0.18 µm → 5000 pattern/AM chip

SVT upgrade total: 6M pattern, 40MHz

AMchip04 –65nm technology, std cell & full custom, 100MHz

Power/pattern/MHz ~30 times less. Pattern density x12.

First variable resolution implementation!

F. Alberti et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040
The Clustering Implementation

- The current implementation is an evolution of a linear algorithm with a high cost in terms of FPGA resources.
- In the previous algorithm grids of 168x4 or 328x8 pixels were used. For these grid sizes the extrapolated area and clock results (for the Spartan 6–LX150T) would be:

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Slice Registers</th>
<th>Slice LUTs</th>
<th>Clock</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>21x8 (current)</td>
<td>696 (1%)</td>
<td>1950 (2%)</td>
<td>12ns</td>
<td>83Mhz</td>
</tr>
<tr>
<td>168x4</td>
<td>2784 (1.5%)</td>
<td>7800 (8.2%)</td>
<td>68ns</td>
<td>14.8Mhz</td>
</tr>
<tr>
<td>328x8</td>
<td>10510 (5.7%)</td>
<td>30457 (33%)</td>
<td>265ns</td>
<td>3.8Mhz</td>
</tr>
</tbody>
</table>
• AMBFTK is EURCARD 9U format
• Massive serial I/O
 • 2 Artix 7 FPGAs
 • Only serial communication busses
• Additional FPGAs for VME control
 • Slave for VME communication in the AUX-card
• LAMB redesigned for the newer AM-chip
 • Serial communication replaced the parallel busses
 • See M. Beretta talk on 24/09
 • https://indico.cern.ch/contributionDisplay.py?contribId=50&confId=228972
• Different voltages to be distributed
 • 3.3V for the I/O
 • 1.2V AM-chip
• High power consumption, about 200 W
AM working principle

One flip-flop per layer stores the match results.
AM working principle

One flip-flop per layer stores the match results

Flexible input: position, time, objects (e, μ, γ)

Pattern matching is completed as soon as all hits are loaded. Data arriving at different times is compared in parallel with all patterns. Unique to AM chip: look for correlation of data received at different times.
AUX

- 9U VME Rear Transition Card
 - 280mm deep!
- I/Os:
 - Fibers: to DF, SSB
 - 2 x QSFP (8 x RxTx @ 6Gbps)
 - 1 x SFP (1 x RxTx @ 2Gbps)
 - P3 Connector: Data to AMB
 - 12 x Out @ 2Gbps
 - 16 x In @ 2Gbps
 - P2 Connector: VME control, power
- Processing power: 6 Arria V FPGAs
 - 20 Mb RAM, ~1000 DSPs each