E lexperiment

Chiara Casella IPP - ETH Zurich

UCL HEP seminar London, 26.02.2016

ETH Institute for Particle Physics

The

SAFIR : Small Animal Fast Insert for mRi

R&D project in **Positron Emission Tomography (PET)** instrumentation for pre-clinical hybrid PET / MRI acquisitions

Outline

Define the context :

- PET basics
- multimodal PET/CT and PET/MRI
- short digression with a historical approach

SAFIR :

- SAFIR goal
- detector design
- simulations
- image reconstruction
- characterization of the hardware components
 - SiPM
 - scintillator crystals
 - readout ASIC chips (high rate tests)
- future plans

Conclusions

Setting the stage...

PET : Positron Emission Tomography

PET detection principle

most widely adopted detection technique :

- inorganic scintillators

mostly L(Y)SO [Lu based crystals]

- photosensors

traditionally PMT (block detector) now Silicon based photodetectors (APD/SiPM)

different approaches of xtal/photosensors coupling

Early PET images (at CERN)

D. Townsend, A. Jeavons CERN, 1977

first reconstructed image of the skeleton of a mouse injected with 18-F

detector : HIDAC i.e. wire chamber (from G. Charpak)

"You are indeed correct that the birth of PET is somehow controversial" (D. Towsend)

Randomly selected PET images

myocardial perfusion (Rb-82) in a normal patient

F-18 young rat imaged with the AX-PET

huge domain of applications both in clinical and pre-clinical fields

- full body / brain /or organs-specific
- oncology (diagnosis, tumor staging)
- study of neurogerenerative diseases
- psychology
- cardiac functioning monitoring
- in-beam monitoring in hadron-therapy
- medical research
- pharmacokinetics
- development of new tracers
- -6-

Skeleton of a mouse injected with 18-F at CERN

remarkable development!!

Most important factors that contributed to this :

- instrumentation development [great boost from HEP : calorimetry / new crystals / new photodetectors / electronics]
- **computing power** [improved reconstruction algorihtms]
- radio-chemistry [FDG-based radiomarkers]
- PET / CT (Computed Tomography)

Skeleton of a mouse injected with 18-F at CERN

remarkable development!!

Most important factors that contributed to this :

- instrumentation development [great boost from HEP : calorimetry / new crystals / new photodetectors / electronics]
- **computing power** [improved reconstruction algorihtms]
- radio-chemistry [FDG-based radiomarkers]
- PET / CT (Computed Tomography)

PET and CT: a perfect fit

 idea: combine functional imaging from PET with morphological imaging from CT (X-rays) (D. Townsend)

- born in the clinical domain (first commercial PET/CT scanner: 2001)
- 2006 : no more stand-alone PET !

A revolution in medical imaging !

- clinical evaluation (~ 10 years) => importance of co-registered anatomical information at high resolution with functional data
- immediately recognized by-product :

CT generates the attenuation correction map needed for PET to be quantitative (instead of lengthy transmission scans)

PET/CT :

- Localization
- CT-based attenuation correction

PET and MRI: an even better fit ? - PART I

MRI : Magnetic Resonance Imaging also provides morphological information

Anatomical counterpart for PET:

MRI ?

Advantages of PET/MRI vs PET/CT :

- high soft-tissue contrast (brain)
- no additional dose (kids)
- reduction in positron range => improved spatial resolution
- possibility of simultaneous acquisition
 - => no temporal mismatch (organs movements)

PET and MRI: an even better fit ? - PART II

MRI is also functional - full complementary to PET

Two examples :

[1] MRS (Magnetic Resonance Spectroscopy)

- study tissue metabolism with 13C-labelled substrates
- MRS: high chemical specificity in identifying different metabolites
- MRS: low sensitivity (or interference with methabolism processes)

if 11C -labelled => MRS + PET

[2] CBF - Cerebral Blood Flow

- importance of constant delivery of oxygen in the brain
- CBF mechanisms are not yet completely understood
- CBF used as surrogate of neural activity in MRI => functional MRI

if **150**-H2O => **fMRI + PET**

t1/2(O-15) ~ 2 mins changes of CBF up to 20% in time scales of seconds => high temporal resolution needed

Hybrid PET / MRI

Great potential for PET/MRI to become the dominant nuclear imaging technique

- 1+1>2! • MRI as the anatomical counterpart of PET (with advantages wrt CT)
- Functional capabilities of MRI (fMRI)

The potential of PET/MRI is fully exploited when :

- fully simultaneous (time / space correlation) => PET inside the MR bore
- dynamic studies

But...

PET / MRI is technically very challenging !

- Mutual non-interference of the two modalities
 - PET must work into MRI (no PMT; heating / vibrations; electronics interference)
 - MRI must be undistorted by PET difficult, but possible
- Limited space available

Possible, thanks to the revolution in photodetection

PMT

high gain good timing not MR compatible

Kobe City College, Osaka University

fibers + PS-PMT Axial ~ 0.5 cm

University of Cambridge

split magnet fibers + PMT Axial ~ 7 cm

Possible, thanks to the revolution in photodetection

relevant examples of **pre-clinical simultaneous** PET/MRI that have been used for **in-vivo analysis**

Possible, thanks to the revolution in photodetection

APD (Avalanche Photo Diodes)

insensitive to magnetic field / compact / low gain

=> worse timing perfs

=> need of very low noise FE electronics

SiPM (Silicon PhotoMultipliers)

SiPM is the dominating technique for all new PET developments

:-) ...Advantages :

- insensitive to magnetic field
- compact
- gain ~ PMT => excellent timing resolution + no need of very special care in the FE
- high PDE
- low bias voltage
- exist in arrays of increasing dimensions

nr cells ~ 100 to 15000 / mm² typical cell size ~ 20 to 100 μ m

:-(...Disadvantages

temperature dependence of the gain => stability issues (Temp, Vbias) / cooling
(- dark counts)
non - linearity

-14-

Overview of current small animal PET and PET/MRI

SAFIR : GOAL

Small Animal Fast Insert for mRi :

- pre-clinical PET / MRI
- fully simultaneous
- unprecedented high temporal resolution

(acquisition duration of the order of a few seconds - at high repetion rate)

dynamic studies of various biological processes

(e.g. blood perfusion - cerebral blood flow with O-15)

¹⁵O: t1/2 ~ 2 mins ; changes in tracer concentration ~ 20% in secs

Detector requirements

[same as in clinical TOF-PET, without being TOF-PET!]

high channel density

limitations from the

existing magnet

SAFIR design concept

sketch of 1/2 detector design not yet finalized!

radial arrangement of crystal matrices with 1:1 coupling to SiPM arrays

- LSO-type (LYSO, LSO:Ca...) crystal matrices
- modular structure of crystals
- ring structure / several modules per ring
- rings stacked axially to provide the axial FOV coverage

SAFIR SIMULATIONS

- custom simulation framework
- native Geant4
- DETECTOR
 - 'reference' design geometry
 - gaussian time smearing $\sigma = 90 \text{ ps} => \text{CRT} \sim 300 \text{ ps}$ fwhm
 - gaussian energy blurring $\Delta E/E \sim 20\%$ fwhm

according to

NEMA standard (NU 4-2008) :

- 1. Noise Equivalent Count Rate (NECR)
- 2. Sensitivity
- 3. Spatial resolution

NEMA (National Electrical Manufacturer Association): standardized methodology to evaluate the performance of a scanner independently on the specificity of the designs.

sources and phantoms used in simulations according to NEMA prescriptions

Quantity	Phantom Material	Phantom Shape	Source	Activitiy (MBq)
NECR	High-density polyethylene	Mouse-like (cylinder, I=70 mm, d=25 mm)	¹⁸ F line (l=60 mm)	10, 25, 50, 100, 200, 300, 400, 500, 700, 1000
Sensitivity	Acryl	Cube (1 cm x 1 cm x 1 cm)	²² Na point-like	0.1
Spatial resolution	Acryl	Cube (1 cm x 1 cm x 1 cm)	²² Na point-like	0.1

NECR (Noise Equivalent Count Rate)

figure of merit in PET (counting statistics)

from simulated data (with reference design geometry)

 NECR = rate of 'true' coincidences normalized to the total number of coincidences

$NECR = T^2 / (T+S+R)$

NEMA prescriptions :

mouse cylindrical phantom with line source at different activities

- higher NECR value => higher ratio of good events (T) to the overall detected events (T, R, S) i.e. S/N
- larger activity **peak value** => capability to handle higher activities without being dominated by the randoms + scatters

-21-

NECR (Noise Equivalent Count Rate) vs CRT

strong impact of the timing resolution on the NECR

=> Feasibility of the SAFIR concept

with CRT ~ a few 100's ps (<500 ps) and at Act ~ 500 MBq

(1) still far from being dominated by randoms

(2) NECR ~ x6/7 'standard NECR' at activities (~ 50 MBq) (i.e. 1 min => 10 secs) $^{-22-}$

Sensitivity

from simulated data (with reference design geometry)

Sensitivity = N_detected_coincs / N_annihilations - <u>at photopeak</u>

N_detected coincs & N_annihililations defined according to NEMA standard

- NEMA phantom : 1cm³ acrylic with 22-Na point source at the center
- low activity (Act = 100 kBq)

S_peak ~ 3.8% (at photopeak)

Large solid angle coverage (~ 85%) =>
 Very good sensitivity

- expected to increase with the inclusion of ICS (Inter-Crystal Scattering) events

Spatial resolution

from simulated data (with reference design geometry)

- NEMA phantom : 1 cm^3 acrylic with 22-Na point source at the center low activity (Act = 100 kBq)
- at different radial distances in two different axial positions

Resolution ~ 2mm FWHM (at center of FOV)

SAFIR image reconstruction

STIR (Software for Tomographic Image Reconstruction)

- Open Source software (C++)
- libraries for image reconstruction and manipulation of projection data
- several reconstruction algorithms already implemented

Goal :

recover the activity distribution, starting from the acquired data

Data :

LOR of the various coincidence events i.e. **projections** (typically organized in "sinograms")

f(x,y) => g(s,θ) : data taking (projection) g(s,θ) => f(x,y) : back projection

Two different approaches :

-25-

ANALYTICAL METHOD

- Filtered Back Projection (FBP) :
 - I) Fourier analysis of the projection data
 - 2) Different weight to different frequencies ("filtering")
 - 3) "Back-Project"

• simple and fast / less accurate

ITERATIVE METHOD

- optimization procedure until the best estimate of the source is found (several optimization strategies exist)
- it requires the accurate model of the emission and detection processes
- slow and CPU consuming
- accurate reconstruction

SAFIR image reconstruction (static)

- iterative (OSEM 1 subset 12 iterations)
- 1 sec data
- 500 M decay events
- "best case scenario"

SAFIR image reconstruction - plans

Currently ongoing activities :

- simplified mouse phantom with realistic activity concentrations

- future : from frame-based reconstruction to 4D reconstruction algorithms

Characterization of hardware components

Hardware components:

- SiPMs
- crystals
- readout chips for SiPM

A few samples of arrays in the 'reference' design (i.e. 8x8 arrays, pitch 2.2 mm) have been procured only recently

Tests done so far : on individual crystals / SiPM or 4x4 arrays (3.2 mm pitch)

LYSO (Hilger) LYSO (Agile) LFS (Hamamatsu) LSO & LSO:Ca (SiPAT) - only on single crystals

Analogue characterization SiPM / crystals

same setup used with LED on bare SiPM for single photoelectrons detection

analogue readout chain

-29-

Analogue characterization SiPM / crystals

Analogue characterization SiPM / crystals

[*] = plots

~ 1000 - 1500 pe's @ 511 keV different saturation response depending on the adopted SiPM type

Timing properties of different crystals

- different types of crystals
- pairs of crystals tested with digital SiPM (Philips)
- direct comparison of coincidence time resolution

1.5 x 1.5 x 12 mm3 - Sipat LSO:Ce
 1.5 x 1.5 x 12 mm3 - Sipat LSO:Ce : Ca
 1.5 x 1.5 x 12 mm3 - Sipat LSO:Ce : Ca +

wrapped crystal (ESR) and optical coupling between crystals and photosensors (**grease**)

measured CRT

[446 +/- 5.2] ps

- [329.7 +/- 1.5] ps 25% improvement wrt undoped
- [228.1 +/- 1.5] ps 30 % improvement wrt bare

LSO Ca-codoped are better in terms of timing <u>BUT DIFFICULT TO PROCURE in large quantity</u>

-32-
Readout ASIC chip

Both developed within the

Endo-TOFPET-US project

- clinical

- Time of Flight !

Out of the many existing SiPM readout chips options :

- **ToFPET(v1) ASIC** (developed at LIP Lisbon)
- **STIC v3.1 ASIC** (developed at KIP Heidelberg) Harion at el, JINST9 C02003

readout for SiPM and Xtals matrices

measure time and energy

timing resolution

high channel density

low power consumption

high rate capabilities

measure time and energy on individual channels with very good timing perfs

SAFIR

1

1

✓ very good

(CRT < 500 ps FWHM)

1

1

1

Rolo et al. JINST8 C02050

EndoTOFPETUS

1

1

✓ excellent

(CRT ~ 200 ps FWHM)

1

1

High rate test with TOFPET and STiC ASICs

at University Zurich Hospital (daily 18-F production)

- Activity : ball phantom [⊗ = 11mm]
 filled with FDG [t_{1/2} 18-F ~ 120 mins]
- Activities up to 500 MBq
- 2 matrices [xtals + SiPM arrays] 4x4 channels
 - Hamamatsu S12642-0404PB-50 : 4x4 ch, TSV, 3x3 mm2 sensor size, 3.2 mm pitch
- LYSO crystals (Agile) : 4x4 xtals, (3.1 x 3.1 x 12) mm3 each, ESR wrapping / separation (100 um thick)
 i.e. existing commercial components different form factors and distances wrt SAFIR reference design
 reduced nr of channels/chip
- operated in coincidence
- same matrices used alternatively for the TOFPET and the STiC setup
- 2 identical parallel setups in a thermal box
- ToT spectrum
- Rate capabilities
- CRT performance

TOFPET performance : ToT and Rate

Time Over Threshold

Rate performance

Low Energy contribution due to important cross talk effect in the crystal matrix

500 MBq SAFIR-equivalent (scaled by size of xtals and F2F distance)

- up to 160 kHz/channel
- then : saturation effect
- not linear anymore at SAFIR equivalent point
- low energy contribution significantly impacts the total rate/channel

STiC performance : ToT and Rate

+ **linearization** circuitry in the ToT

• ~ 40 kHz/channel at SAFIR-equivalent (as from MC)

TOFPET performance : CRT

STiC performance : CRT

TOFPET and STiC as possible readout for SAFIR

Results from the High Rate Test :

• Significant low energy contribution in the ToT distribution

in the tested setup [Agile matrices + Hamamatsu SiPM] (cross-talk effect btw xtals)

- Need to cut on those events <=> reduce bandwidth occupancy
- Need to have a high validation threshold:
 - STiC(v3.1) : ok
 - TOFPET(v1) : no
- Rate capabilities :
 - SAFIR requirement : ~ 40 kHz/channel (with 2x2 mm2 detector size as in reference design)
 - excellent rate performance (>> SAFIR reqr.) both for STIC(v3) and TOFPET(v1)
- Coincidence Timing Resolution :
 - SAFIR requirement : CRT ~ 300-500 ps FWHM
 - very good CRT in the full range of explored activities
 - STIC(v3.1) CRT ~ 300 ps FWHM at 500 MBq SAFIR-equiv.
 - TOFPET(v1) CRT ~ 400 ps FWHM at 500 MBq SAFIR-equiv.
 - Still under study : deterioration of the CRT with increasing activity
 - $\Delta\sigma/\Delta Act \sim 30-40 \text{ ps} / 100 \text{ MBq}$ (100 MBq in HighRateTest setup ~ 650 MBq SAFIR)
 - but does not compromise the CRT perfs

=> STiC is considered a valid candidate for SAFIR readout

PETA module

alternative option for SAFIR

- compact module for TOF in PET [crystals, SiPM array, RO chip]
- I. Sacco et al: 10.1016/j.nima.2015.11.004 [in press]
- developed within the Sublima project
- based on the PETA chip

- FBK (RGB-HD technology)
- 12x12 channels
- (2.25 x 2.25 x10) mm3

TOP VIEW

- 2.5 mm pitch
- wire-bonded SiPM dies

Crystals

- LYSO + ESR/Alu/ESR

Readout chip

PETA chips

single ceramic substrate

- PETA5 chip (x4/module)
- Position Energy Time ASIC
- 32 channels / chip
- bump-bonded ASIC
- Time (discri + TDC)
- Amplitude (charge input integr.)

Tests with high activity (one chip/module) 2 modules coincidences

although only by preliminary tests **PETA** is considered a valid candidate for SAFIR readout

BOTTOM VIEW

inlet/outlet for internal liquid cooling

<lcm

SAFIR future steps

Bruker BioSpin 70/30 MRI-scanner already commissioned and in use at ETH Zurich

1. Two small scale prototypes

- two modules coincidence setups
 - in the final mechanical arrangement
 - inside the MR-bore
 - * PETA modules
 - * 2 modules (12x12)
 - * xtal size : (2.25x2.25x12) mm3
- test high rate performance
- test full MR-compatibility

- * STIC chip RO
- * 2 matrices (8x8)
- * xtals size : (2.1x2.1x12)mm3
- * "reference design"

- now : building / commissioning the needed readout electronics
- expected prototypes ready: May 2016 tests : 2nd half 2016

2. First full ring

- · choice of the readout solution
- extension to one full ring [same geometry of xtals and SiPM as in prototype]
- development and tests of 4D reconstruction algorithms
- full tomographic acquisitions for dynamic studies [but limited coverage of FOV
- expected : 2017

3. Final SAFIR detector

- design to be confirmed / tuned also on first full ring experience (e.g. maybe improve the spatial resolution with new developed detector heads)
- full commissioning ... towards ~ secs acquisitions!!!

The same support foreseen for the full system will be used in the two small scale prototypes

conclusions

Conclusions

I have described the **SAFIR detector concept** and **its progress status** (software and hardware activities)

SAFIR: unconventional detector for hybrid PET/MRI acquisition with the dedicated goal of dynamic and simultaneous imaging at unprecedented temporal resolutions (target user: ETHZ/UniZh Institute of Biomedical Engineering)

Peculiarities of the detector :

500 MBq activity (wrt standard ~ 50 MBq)

excellent time resolutions : CRT ~ 300 - 500 ps FWHM (w/o being a TOF-PET)

heavy usage of SiPM sensors

(not peculiar to SAFIR, but standard nowadays in PET developments)

Conclusions

I have described the **SAFIR detector concept** and **its progress status** (software and hardware activities)

SAFIR: unconventional detector for hybrid PET/MRI acquisition with the dedicated goal of dynamic and simultaneous imaging at unprecedented temporal resolutions (target user: ETHZ/UniZh Institute of Biomedical Engineering)

Peculiarities of the detector :

500 MBq activity (wrt standard ~ 50 MBq)

excellent time resolutions : CRT ~ 300 - 500 ps FWHM (w/o being a TOF-PET)

heavy usage of SiPM sensors

(not peculiar to SAFIR, but standard nowadays in PET developments)

What you were probably wondering at the beginning of this talk:

" Small Animals??? PET??? Magnetic resonance??? What all this has to do with a HEP Department seminar ???" Keywords of these slides :

calorimetry (measurement of gamma energy with crystals) ; scintillators ; photosensors ; operation in magnetic field ; SiPM ; readout ASIC chips ; high data rate ; fast DAQ ; 10's kchannels

-42-

Inveon preclinical PET scanner

CMS ECAL barrel

but not in the size!

many more similarities than it might look at first glance !

Chiara Casella, ETH IPP - CHIPP Annual Meeting - 30.06.2015

SAFIR collaboration

Institute for Particle Physics - ETH :

R. Becker, C. Casella, D. Di Calafiori, G. Dissertori, L. Djambazov, M. Droge, C. Haller, A. Howard, M.Ito, P. Katheri, J. Fischer, W. Lustermann, U. Roeser

Institute for Biomedical Engineering - ETH: M. Rudin

Institute for Pharmacology and toxicology - University Zurich : A. Buch, G. Warnock, B. Weber

> University of Valencia, IFIC : J. Oliver

Lab tools

analogue readout chain

Na-22 Spectrum

Digital SiPM (Philips)

- fully digital implementation of SiPM
- the electronics for each cell implemented on the same Si substrate of the sensor
- high resolution TDC (19.5 ps resolution)

Very good tool for :

- photon counters
- coincidence timing measurements

TOFPET performance : low energy contribution

Chiara Casella, ETH IPP - VCI2016 - 18.02.2016

- 1 -

TOFPET performance : low energy contribution

Low energy contribution

=> There is LIGHT CORRELATED WITH THE PHOTOPEAK EVENTS everywhere in the matrix Where does it come from?

• cross-talk between SiPM channels of the array (not related with the crystals)?

Magnetic Resonance Imaging (MRI)

- physics basis : **Nuclear Magnetic Resonance (NMR) :** absorption and re-emission of energy by nuclei at their own resonance frequency
- **H** : most abundant element in the body => primary focus of MRI: **H** spins

Extension of the prototype (STIC RO) to a full system

Chiara Casella

SINOGRAM

representation in (s, Φ) coordinates of all the LOR emitted from a given point in the FOV

Figure 4.1. Schematic representation of a ring scanner. A tube of response between two detectors d_a and d_b is represented in grey with the corresponding LOR, which connects the center of the front face of the two detectors. The sinogram variables s and ϕ define the locatioh and orientation of the LOR.

each row in a sinogram is the projection along the angle associated with that row

Single Slice Rebin [SSRB]

- for each source position (i) :

the full set of sinograms is rebinned to a single 2D sinogram approximation - but acceptable near the center of the scanner and for small apertures

Spatial resolution - NEMA prescription

- phantom : 1cm³ acrylic with 22-Na point source at the center
- low activity (Act = 100 kBq)
- moved axially / transaxially (5 mm steps)

a full set of sinograms for each axial position (accounting for all oblique configurations) rebinned into one single sinogram [SSRB]

1! sinograms for each i position

FBP

=> Resolutions

Sensitivity - NEMA prescription

Sensitivity = N_detected_coincs / N_annihilations

- phantom : 1 cm^3 acrylic with 22-Na point source at the center - low activity (Act = 100 kBq)
- moved axially over the full FOV
- for each source position (i) : 10000 true coincidences detected acquisition duration : time t_i N_annihilations (i) = Act * BR(=0.90) * t_i
- N_detected_coincs : through reconstructed sinograms
- for each source position (i) :

a full set of sinograms for each axial position (accounting for all oblique configurations) rebinned into one single sinogram [SSRB]

obtain the projection that would derive from such an object

obtain the projection that would derive from such an object

O conclusion

dSiPM : Digital SiPM (Philips)

- fully digital implementation of SiPM
- electronics on the same Si substrate as for the sensor
- on-board TDC (19.5 ps resolution)

interest of dSiPM for PET applications :

- High resolution timing information => TOF-PET
- Integration (bias supply included, amplifier, TDC, photon counter)
- Compactness
- Early digitization of the output => **Low noise**
- Digital => **Temperature and gain stability less critical** wrt analogue
- Fast active quenching => no Afterpulses.
- Possibility to disable individual cells => Reduction in the dark count rate (but lower PDE)

T. Frach

- 8x8 pixel matrix
- Each pixel contains 3200 (DLS3200) or 6400 (DLS6400) cells
- Pixel is 3.2 x 3.8 mm² (close to MPPC size)
- Digital device, i.e the output is directly the number of detected photons
- Each event is made of:
 - Die ID
 - timestamp
 - #photons in each pixel composing the die

die 3	die 2	die 1	pixel 2 pixel 1 die 0 pixel 3 pixel 4
die 7	die 6	die 5	die 4
die 11	die 10	die 9	die 8
die 15	die 14	die 13	die 12

(glass position)

Digital Silicon Photomultiplier (D-SiPM)

O conclusion

pixel (i.e. 3200/6400 diodes) state machine :

If the trigger is validated, the full readout starts - Σ < 1 µs => Rates ~ MHz can be sustained

Every non-validated trigger leads to the recharging of all cells. Without cooling, the device can loose efficiency/availability.

Digital vs Analogue SiPM

SiPM : intrinsically already a "digital" device

Advantages of digital vs analogue:

- integration (bias supply, amplifier, TDC, photon counter)
- compactness
- (very good timing resolution)
- early digitization of the cell output = low noise
- digital => Temp and Gain stability less critical
- fast active quenching => no afterpulses
- possibility to deactivate individual noisy cells = low dark count rate

Shared limitations digital / analogue :

- limited nr of cells => saturation
- high dark count rates

Drawbacks:

- cooling advisable / needed
- long readout time ($\sim 1 \ \mu s$) over a

Counter

- quite large detector surface (8x8 mm2)
- => deadtime / availability issues
- lack of flexibility: readout functionality is designed into the sensor; in case of mismatch with the needs expensive FPGA/sensor modifications required

3