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Analysis Differences

Precision Measurements
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(takes time and can be 
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Analysis Differences

Precision Measurements

▷ Detector-corrected 
(takes time and can be 
complex)

▷ Selection usually based 
on Standard Model (SM) 
process (but *shouldn’t* 
assume it)

▷ Usually measure total 
and/or differential 
cross-sections as a 
function of key 
observables
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Searches

▷ Detector-dependent, fast, 
simple-as-possible 
analyses

▷ Selection usually based on 
one or more benchmark 
Beyond Standard Model 
(BSM) models

▷ Usually measure number 
of events in signal 
region(s) and use this to 
place exclusion limits on 
models of choice (or 
hopefully discover one 
day!)



6



7



Blurring the Edges
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Feedback Loop
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Different Approaches
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Cross-section level search

Measure cross-sections in 
region sensitive to BSM physics 
e.g. jet(s)+missing transverse 
energy: Eur Phys J C 77 (2017) 
765

https://doi.org/10.1140/epjc/s10052-017-5315-6
https://doi.org/10.1140/epjc/s10052-017-5315-6


Different Approaches
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Cross-section level search

Measure cross-sections in 
region sensitive to BSM physics 
e.g. jet(s)+missing transverse 
energy: Eur Phys J C 77 (2017) 
765

Unfolding Control Regions

Produces precise information 
useful for modelling in future + 
potential sensitivity to BSM: 
arxiv:1902.00377

https://doi.org/10.1140/epjc/s10052-017-5315-6
https://doi.org/10.1140/epjc/s10052-017-5315-6
https://arxiv.org/abs/1902.00377


Different Approaches
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Reinterpreting Measurements

Testing sensitivity of existing 
cross-section results to new 
physics theories e.g. CONTUR: 
https://contur.hepforge.org

Cross-section level search

Measure cross-sections in 
region sensitive to BSM physics 
e.g. jet(s)+missing transverse 
energy: Eur Phys J C 77 (2017) 
765

Unfolding Control Regions

Produces precise informtion 
useful for modelling in future + 
potential sensitivity to BSM: 
arxiv:1902.00377

https://contur.hepforge.org/index.html
https://doi.org/10.1140/epjc/s10052-017-5315-6
https://doi.org/10.1140/epjc/s10052-017-5315-6
https://arxiv.org/abs/1902.00377


Different Approaches
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BSM sensitive measurements

Make SM measurement as 
re-interpretable and 
model-independent as possible, 
e.g: four leptons: 
https://arxiv.org/abs/1902.05892

Cross-section level search

Measure cross-sections in 
region sensitive to BSM physics 
e.g. jet(s)+missing transverse 
energy: Eur Phys J C 77 (2017) 
765

Unfolding Control Regions

Produces precise information 
useful for modelling in future + 
potential sensitivity to BSM: 
arxiv:1902.00377

Reinterpreting Measurements

Testing sensitivity of existing 
cross-section results to new 
physics theories e.g. CONTUR: 
https://contur.hepforge.org

https://arxiv.org/abs/1902.05892
https://doi.org/10.1140/epjc/s10052-017-5315-6
https://doi.org/10.1140/epjc/s10052-017-5315-6
https://arxiv.org/abs/1902.00377
https://contur.hepforge.org/index.html


Four Lepton Mass 
Spectrum
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Four Lepton Events
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Four Lepton Events
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Four Lepton Events
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Four Lepton Events
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Four Lepton Events
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2015+2016 Data Analysis
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Advancing my quest for involvement in all ATLAS 
physics groups...
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m4l

Higgs ZZ

▷ Selection criteria (slightly 
tweaked)

▷ Reducible background 
estimate

▷ Analysis framework and 
tools

▷ On-shell ZZ analysis
▷ Detector correction 

experience, tools and 
cross-checks

▷ Official lead group

SM (electroweak)

Previously Supersymmetry and Exotics!

▷ Proof-of concept first analysis of this kind
▷ Small team so sharing resources was very helpful!
▷ Moving away from this for next round →  more inclusive and 

straightforward selection 



Fiducial Region Definition

24

Cross-section measured in region driven by kinematic acceptance of detector

▷ At least 4 leptons - muon (electron) pT > 5 (7) GeV, 
|η| < 2.7 (2.47) - (>20/15/10 GeV in pair)

▷ Form two pairs of same flavour, opposite sign 
(SFOS)leptons, e.g. e+e-e+e-, e+e-𝝁+𝝁-, 𝝁+𝝁-𝝁+𝝁-

▷ Pair with dilepton mass closest to Z boson mass 
primary pair - must be 50 - 106 GeV, 
second-closest are secondary pair  - uses sliding 
scale f(m4l) - 115 GeV

▷ Separated by ΔR > 0.1 (0.2) for same(opposite) 
flavours

▷ Mll > 5 Gev for all SFOS pairs (J/Psi veto)

Maintains sensitivity to Z→ 4l but suppresses leptons from tau lepton decays 



Reconstruction-level selection
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Composition
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Irreducible
▷ ZWW, ZZW, ZZZ,  ttZ
▷ Take from MC 
▷ Contributes around 1.6% total events

Reducible
▷ Z+jets, tt, WZ
▷ At least one “fake” lepton 

○ Heavy flavour hadron decays
○ Muons from “light flavour” pion/kaon 

decays
○ Jets mis-identified as electrons
○ Electrons from photon conversions

▷ Contributes around 1.9% total events
▷ Estimated with data-driven methods 

Fiducial Region dominated by “signal” processes (96.5%)
▷ Slightly increased WRT Higgs analysis by decreasing lower mass limit on 

secondary lepton pair  



Signal Simulation
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Irreducible Background:

▷ ttV(V) - Sherpa 2.2.1 LO scaled to 
NLO QCD + EWK

▷ VVV - Sherpa 2.1 NLO for 0 jets, LO 
for 1, 2 jets

Higgs Signal:

▷ Gluon fusion - Powheg 
NNLOPS

▷ Vector Boson fusion - 
Powheg VBFH

▷ Associated Boson - Powheg
▷ qqH - MG5_aMC@NLO

qq→ ZZ:

▷ Sherpa 2.2.2 NLO for 0,1 jets, 
LO for 2,3 jets, + NLO EWK 
corrections

▷ Electroweak 4l+jj Sherpa 2.2 
NLO at 2 jets

▷ Generator cross-check 
samples - 
PowhegBox+Pythia8 + 
NNLO QCD + NLO EWK

gg→ ZZ:

▷ Sherpa 2.2 LO for 0, 1 jets, + NLO 
QCD + flat NNLO/NLO k-factor of 
1.2

▷ Separate samples for process via/not 
via Higgs, and interference 

Reducible Background:

▷ Z+jets, Sherpa NLO 0,1,2j, LO 3,4 j
▷ tt, WZ Powheg



Reducible Background Estimation

28

Control Region

Methodology:

▷ Split into ll+ee and ll+𝜇𝜇
▷ Target processes with different 

efficiencies, e.g. heavy flavour and 
light flavour in control regions

▷ Reversed/relaxed/altered selections 
WRT signal selection

▷ Define transfer factors for yields in 
CRs → yields in signal region

▷ Shape taken from MC except for light 
flavour ll+ee case

Validation:

▷ Loosened region to check estimation
▷ Compare multiple alternative methods



Distributions
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Star of the show - four lepton mass

Double Differential Distributions:

▷ Measure m4l in fairly coarse 
bins of other interesting 
variables;
○ Transverse momentum pT

4l

○ Rapidity y4l
○ Lepton Flavours - 

eeee/ee𝜇𝜇/𝜇𝜇𝜇𝜇
○ Matrix element 

discriminant
▷ Potential increased sensitivity
▷ Improved modelling in future 

can be fed in



Double differential example - PT
4l
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Matrix element discriminant - DME
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What is it?:

▷ Calculated using Z boson 
production angles  and decay 
angles

▷ Matrix element for qqZZ, 
ggZZ and gg→ H→ ZZ 
calculated in MCFM

▷ Can help separate off-shell 
Higgs production from 
other processes by splitting 
into two bins



Uncertainty Sources
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Dominated by 
statistical 
uncertainty

Lepton dominated by 
reconstruction, 
identification and 
isolation efficiencies

Data has a flat ~2% 
uncertainty associated 
with luminosity 
measurement 

Smaller contributions from:
●  Unfolding procedure - estimated by unfolding reweighted truth MC, also 

includes generator uncertainty for qq→ MC simulation
● Data-driven background estimation, combined for ee and 𝜇𝜇
● Theoretical uncertainty includes scale, PDF set and parton showering choices



Uncertainty Sources

Relative sizes do vary across distributions, with exception of luminosity and pileup, 
but always dominated by statistical uncertainty
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Unfolding
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Correct for effects the 
detector has on measured 
data:

▷ Imperfect e.g. efficiency 
to reconstruct leptons, or 
energy resolution

▷ Measure effects by 
comparing “truth” and 
“reconstructed” objects in 
MC simulation

Efficiency:

Events (pass fiducial 
and reco-level)/pass 
fiducial

Fiducial Purity:

Probability that 
fiducial bin is the 
same as reco-level 
bin (in e.g. m4l)

Fiducial Fraction:

Events pass reco-level 
but fail fiducial 
(detector 
resolution/tau leptons)



Unfolding
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○ Uses migration matrix
○ Prior is predicted 

distribution
○ Two iterations used here

Migration Matrix:

Probability that a given fiducial 
bin results in a given reco-level 
bin (in e.g. m4l) (diagonal == 

fiducial purity)First

Multiply 
observation in 

each bin by 
fiducial fraction

Iterative Bayesian 
method to correct for 

bin migration 

Divide each 
bin by 

reconstruction 
efficiency

Subtract 
background 

from data



Differential Cross-sections
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MATRIX is a fixed-order NNLO QCD prediction, no additional higher order 
corrections or QED final state radiation are included



Differential Cross-sections - Flavour
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(Re-)Interpretations
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Statistical Procedure

▷ Use chi-squared function as exponential component of Gaussian likelihood 
quantifying agreement between data and prediction. 

▷ Predicted values are a function of the parameter of interest (POI) and nuisance 
parameter (NP) used for uncertainty sources. 

▷ The covariance matrix is scaled dependent on the POI and NP to account for this.
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▷ R
K

 = N
K

pred(POI,NP)/N
K

pred(POI=SM, NP=0) quantifies the scaling. 
▷ Contributions from the systematic, statistical and background uncertainties. 
▷ Theory uncertainties don’t enter the covariance matrix but have an NP each for 

shape, and for normalisation.
▷ Limits are set with CL

S
 method with a confidence level of 95%. 



Gluon-induced production signal strength
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Interpretation:

▷ Larger contribution once both Z’s 
can be on-shell → use bins above 
180 GeV

▷ M
4l

 distribution has NLO QCD 
available (other distributions give 
consistent results)

▷ qqZZ→ 4l fixed to prediction 
▷ gg→ 4l prediction scaled by signal 

strength (measured xsec/SM 
predicted xsec ) in a scan 

▷ Predictions can vary within 
theoretical uncertainties using 
NPs

Measured: 1.3±0.5

Expected: 1.0±0.4



Z→ llll branching fraction 
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Interpretation:

▷ N
fid 

is number of detector corrected 
events in first bin

▷ f
non-res

 is the fraction of non-resonant 
events in this bin 

▷ σ
Z  

is total Z production cross-section
▷ L is the luminosity  
▷ A

fid
 is the acceptance

  

Measured σ
z
 taken from https://arxiv.org/abs/1603.09222

https://arxiv.org/abs/1603.09222


Off-shell Higgs signal strength 
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Interpretation:

▷ D
ME

 distribution used for this 
interpretation

▷ Fix qq→ 4l to prediction and 
scan signal strength as for gg→ 
4l

▷ 𝜇
H

OS is measured/observed 
cross-section for this process

Measured 95% upper limit on signal strength: 6.5

Expected 95% upper limit on signal strength: 5.4 [4.2, 7.2] 

 Reconstruction-level dedicated Higgs result: 4.5



Modified Higgs boson couplings 
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Model:

▷ BSM modification of couplings of 
Higgs boson to top quark (c

t
) and 

gluon (c
g
)

▷ High mass region allows probing 
of these couplings separately, 
whereas on-shell can only limit            
|c

t
 +c

g
|2

Interpretation:

▷ Use m
4l

 above 180 GeV
▷ Fix qq→ 4l to prediction
▷ gg→ 4l yield is parameterised as 

function of couplings
▷ Vary everything within 

theoretical uncertainties



Re-interpreting
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Rivet routine:

▷ Truth-level implementation of the analysis cross-checked against the code used 
for the paper available online: ATLAS_2019_I1720442.tar.gz

▷ Can take particle-level input and read measurements and predictions used 
directly from 

Hepdata:

▷ Online storage of detector-corrected measurement, predictions used and 
sources of uncertainty, as well as covariance matrices split into statistical, 
systematic and background sources https://www.hepdata.net/record/ins1720442

https://rivet.hepforge.org/downloads?f=contrib/ATLAS_2019_I1720442.tar.gz
https://www.hepdata.net/record/ins1720442


2HDM example
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Two Higgs-Doublet Dark Matter 
Model with Pseudoscalar Mediator:
▷ A and a are 2 of 5 Higgs bosons. All other 

additional Higgs’ have the same mass as A. 
▷ a plays the role of mediator to dark matter
▷ DM candidate has mass of 10 GeV
▷ Taken from Pseudoscalar_2HDMGitRepo

Four Lepton Sensitivity Existing Search Limits

https://contur.hepforge.org/results/Pseudoscalar_2HDM/index.html

▷ Lots of models can produce four 
leptons

▷ In this case, cover region of phase 
space not excluded by ATLAS yet

▷ Quick and easy to check many final 
states, new models and mess with 
parameter settings

https://github.com/LHC-DMWG/model-repository/tree/master/models/Pseudoscalar_2HDM
https://contur.hepforge.org/results/Pseudoscalar_2HDM/index.html


2HDM example
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Four Lepton Sensitivity - MA=270 
GeV, Ma = 230 GeV

Combined CONTUR sensitivity

https://contur.hepforge.org/results/Pseudoscalar_2HDM/index.html

▷ Can see which bin is sensitive - CONTUR 
uses one per analysis currently to avoid 
correlations

▷ Can combine sensitivity from all available 
analyses

https://contur.hepforge.org/results/Pseudoscalar_2HDM/index.html


2HDM example
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Varying other parameters

https://contur.hepforge.org/results/Pseudoscalar_2HDM/index.html

▷ Sensitivity for all combined analyses. 
▷ Easy to make changes to model and re-run
▷ Can also split to see main contributions to sensitivity

https://contur.hepforge.org/results/Pseudoscalar_2HDM/index.html
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▷ Four Lepton events measured by ATLAS sensitive to 
wide range of physics processes 

▷ Select same flavour opposite charge lepton pairs with 
mass close to Z boson mass
○ Low contribution from backgrounds
○ Look at mass of four leptons in both selected pairs  

▷ Correct for effects of detector on observed physics 
objects and kinematic properties

▷ Resulting cross-sections easy to compare to theoretical 
predictions made by anyone
○ Including new physics predictions!
○ No need to simulate detector
○ Fast, easy, broad parameter space scans

▷ Complements traditional searches 

Summary



Backup
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Double differential example - y4l
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Double differential example - flavour
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Differential Cross-sections

5252

Comparison to various predictions:

▷ Sherpa and Powheg agree very 
well → validates reweighting of 
Powheg with MATRIX NNLO 
QCD k-factors

▷ Sherpa doesn’t need this, 
intrinsic higher accuracy 
sufficient

▷ Missing real wide-angle QED 
emission in events for on-shell 
ZZ causes underestimation 
from MATRIX wrt full 
generators

▷ gg→ 4l and higgs processes are 
== LO for fixed-order MATRIX, 
whereas generators have 
higher order contributions → 
more underestimations for 
MATRIX



Differential Cross-sections - PT
4l
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Differential Cross-sections - Y4l
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Differential Cross-sections - DME

5555



Met + jets cross-section

5656

▷ Measure ratio of cross-section for Z→ vv to 
Z→ ll processes

▷ Cancel a lot of sources of uncertainty
▷ Sensitive to BSM scenarios producing missing 

transverse energy and jet(s)
▷ Limits comparable to detector-level search
▷ Results re-interpretable for any model with 

these criteria


