Putting Bell inequalities
to work

Dan Browne - AMOPP Group, UCL

joint work with: Janet Anders, Earl Campbell (former post-docs)
and Matty Hoban (former PhD student)



Talk Outline

® Understanding Bell inequalities from the
point of view of computation.



Talk Outline

/,—'—j"‘w

o Understandmg Bell inequalities from the
point of view of computation.



Talk Outline

® Understanding Bell inequalities from the
point of view of computation.



Talk Outline

( Correlations J

l

Correlations and Computation

l

[ From Classical Correlations ]

l

[ To Quantum Correlations j




Talk Outline

( Correlations J

l

Correlations and Computation

l

[ From Classical Correlations ]

l

[ To Quantum Correlations j




Correlations

Fig. 1
IS FACEBOOK DRIVING
THE GREEK DEBT CRISIS?

750m users

Number
of active

Facebook users 16.82

3.6

Yield on 10-year Greek
government bonds

5.5m users

2005 201

Image taken from www.businessweek.com



http://www.businessweek.com
http://www.businessweek.com

Correlations




Correlations
Alice Bob



Alice

et €| O S,

Correlations

Correlated

[ .
| !-’.‘_“‘“-“‘ e ~-
| OB e ———
| : ————
[c3] P00 a ]
J = L
| 5 il t-cfg..” J
o e 2l Ul
vyl =)
!’ " N o2 ~

Bob

ot /| 90O QC,




Correlations as a resource
Alice : Bob

Message bt

/

The Vernam cypher (or one-time pad)
he only provably unbreakable crypto-system.




Correlations as a resource

Alice | Bob
v it Secret random Secret random
€55dg€ DI correlated bit : correlated bit

7”727 r r

The Vernam cypher (or one-time pad)
he only provably unbreakable crypto-system.




Correlations as a resource

Alice | Bob
v it Secret random Secret random
€55agE DI correlated bit correlated bit
7”{27 . r
mor
>

The Vernam cypher (or one-time pad)
he only provably unbreakable crypto-system.




Correlations as a resource

Alice | Bob
Notation: Addition Modulo 2 et random
Message : related bit

" 000 =

7

The Vernam cypher (or one-

ime pad)

he only provably unbreakab

e Ccrypto-system.



Correlations as a resource

Alice | Bob
v it Secret random Secret random
€55agE DI correlated bit correlated bit
7”{27 . r
mor
>

The Vernam cypher (or one-time pad)
he only provably unbreakable crypto-system.




Correlations as a resource

Alice | Bob
v it Secret random Secret random
€55agE DI correlated bit correlated bit
727 . r
mor
>

modPDrdOr=m

The Vernam cypher (or one-time pad) Tﬁ

he only provably unbreakable crypto-system.




Talk Outline

( Correlations J

> [ Bell’s Theorem J

Correlations and Computation j

l

[ From Classical Correlations ]

l

[ To Quantum Correlations j




Bell’'s theorem

.

N

.

™~

® John Bell (1960s) (paraphrased):

® Measurements on space-like separated quantum
systems can exhibit correlations impossible to achieve
in classical physics (or any local realistic theory).
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Bell’'s theorem

Local realistic theories (Local hidden variable models)

Local
An observed event (e.g. the outcome of a measurement)
can only be influenced by events in its past light cone.

Realistic

Measurements reveal pre-existing properties - 1.e. any
apparent randomness Is due to our ignorance only.

Relativistic classical physics is local realistic.



The CHSH Inequality

The "lextbook™ Bell Inequalrty

2 settings (O or ) 2 settings (O orl)
Q. ) ) N
l space-like l
separatec
+1| or-| P +1| or-|
measurements
L Expectation value of product of outcomes

Local realistic theories satisty the CHSH Bell Inequality
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Two readings of Bell’'s theorem

® Standard interpretation

® Quantum Mechanics is not a local realistic
theory.

® Quantum Information interpretation

® Correlations in Quantum Mechanics
achieve something impossible In classical
physics.

® \/\/hat can we use this for?
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Boolean Functions

AND XOR NOT
EDSIEE ) SR
G AND
g_ AND ’\
d ) xor (ab)c ® d

Any Boolean function can:

be composed as a network of AND, XOR, and NOT.
be written as a polynomial (mod 2).
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Boolean Functions
AND XOR NOT

a a
b—j_ ab bjD—a@b a—>o—a@1

AND, XOR, and NOT are a universal set of logic gates.

XOR, and NOT alone do not form a universal set.

Circurts of XOR and NOT alone can only express
linear functions.

C.g. fla,b,c,d) =a®db®ch1

T very tmportant for the rest of this talk!
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From correlations to computations

Alice Bob

| |

ac{0,1} Inthissetup,gpplean Functions 0 € {0,1}

l what set of computations are l

possible in principle in:

Classical (local realistic) Physics

Ac {07 1} FLrst task B ¢ {07 1}
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Alice Eh?! Bob

l How Is this remotely like a l
a € {0, 1} computation? be 0,1}

| |

l Two output bits l
A € {0, 1}/ \B c 40,1}
|

) ‘
|

Add an XOR gate, and consider A®B to be the output of
the computation.
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Alice What Boolean functions are achievable Bob
in principle given classical physics? l
ac{0,1) Space-like separated parties. b e {0,1}
l No advance warning of input. l
Output 1s A®B.

Alice and Bob may share correlated
l bits, pre-agree an “algorithm’". l

AE{O,l} BE{Ovl}
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From correlation to computation

Alice Bob
Yes - all linear functions (XOR, l
l NOT, etc.) can be achieved.
a € {0,1} b€ 10,1}
l Do we need to use the random bits? l
No, we don't.
l What about AND! l
AE{O,l} BE{Ovl}
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Alice AND s impossible to achieve. Bob
l We can prove that: l
be 10,1
@ € {0, 1} With this set up, in any locally realistic 0.1
l theory, the linear functions are the only l
Boolean functions deterministically
achievable.
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Alice AND s impossible to achieve. Bob
l We can prove that: l
be 10,1
@ € {0, 1} With this set up, in any locally realistic 0.1
l theory, the linear functions are the only l

Boolean functions deterministically

achievable. \

l contains the Bell tnequalities
AE{O,l} BE{Ovl}
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From correlation to computation

Alice AND is impossible to achieve deterministically. BOD
l Let’s allow It to sometimes fall. l
a € {0,1} Assume a and b are fair coins. b e {0,1}
,l, L.e. 50% chawnce 0 or 1. l
New task:
l Find the highest probability (on average) l
to achieve AND, 1.e. that A®@B=ab.
Ae {01 O achieve .e. tha a Be {0,1}

‘ (B} ‘
1




From correlation to computation

Alice Example Bob
l The simplest strategy - “always output l
0" will be correct on average 75% of the
a < {O, 1} time. b € {07 1}
l a | b [ab | O l
0 0 0 0
0 | 0 0
| 0 0 0
l | | e l
A€ {0,1} ane 7N B €{0,1}




From correlation to computation

Alice Can 75% be beaten? Bob
l No - we can show that every possible he {01
a € 10,1} strategy (with or without correlations) 0.1
l based on local realistic physics satisfies: l
l Prob(A® B = ab) <0.75 l
A Bell tnequalit
A€ {0,1} 1 J B € {0,1}

‘ (B} ‘
1




From correlation to computation

Alice Why 75%? Bob
l Prob(A & B =ab) <0.75 l
a€4{0,1} T & 161 o be{0,1}

l 0 0 0 0 l

0 | 0 0

| 0 0 0

| | | 0
l ™ l

Ae {01} Closest Linear function g c 0,1}

‘ (B} ‘
1
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Qubits

bits > qubits
101101... «|101101...) + B|001001...) + - -

e

Complex welighted superposition

he prototypical qubrt - the spin 1/2



Qubit measurements

® Key observables: Pauli operators (Ox, Oy, Oz)

0 1 0 —1 I 0
=(1o) v=(74) z=(0 4

® .o Stern-Gerlach measurements
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How to violate a Bell Inequality

Alice Alice and Bob share a singlet state: Bob
1
l V) = ﬁ(\OD — [10)) l
a € {0,1} be 10,1}
| |
1 |
AE{O,l} BE{Ovl}
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How to violate a Bell Inequality

Alice Alice and Bob shlare a singlet state: Bob
¥) = —=(]01) = [10))
| v l
ac{0,1) Alice’s input: Alice measures: be{0,1}
a =0 X l
l a=1 Z
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How to violate a Bell Inequality

Alice

|

a € 40,1}

|

A e {0,1}

Alice and Bob share a singlet state:

L (j01) - J10))

Y) =

Alice’'s input:
a=70
a=1

Bob's input:
b=20
b=1

V2

Alice measures:

X

Bob measures:

(—X — 2)/\/2
(Z - X)/V2

D

l

<

/

Bob

|

be{0,1}

|

B €{0,1}




How to violate a Bell Inequality

Alice Alice and Bob shlare a singlet state: Bob
¥) = —=(/01) = [10))
l v l
ac {01} Alice’s input: Alice measures: be{0,1}
a =0 X l
,l, a=1 A
Bob's input: Bob measures:
l b=0 (=X —2) /\%5 l
b=1 (72— X)/V2
AE{O,l} BE{Ovl}

‘ (B} ‘

Convert +1/-1 to O/1. l Convert +1/-1 to O/1.




Violating the Bell Inequality

Alice Bob
Calculating the probability, we find.. l
aE{O,l} b6{071}
AE{O,l} BE{Ovl}
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Violating the Bell Inequality

Alice Bob
Calculating the probability, we find..

| |

ac 0.1} i 3 be 0,1}
l PTOb(A @ B — CLb) — 4 ~7 085 l
This violates the Bell inequalrty
l bound of 0.75. l

AE{O,l} BE{Ovl}

‘ (B} ‘

Convert +1/-1 to O/1. Convert +1/-1 to O/1.




Are quantum correlations useful for computation?

The results so far...

® [or all local realistic theories: equi\/al,ewt

Prob(A® B = ab) < 0.75 0 O,H'@‘ Bell
Lnéq.

® [or gquantum mechanics, we demonstrated

rovable
2+ 2 P
Prob(A@® B = ab) = 4\f ~ 0-85(-7P‘P6Y bound
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l |

* b
a €101} The same proofs go through for i

l n-party generalisations. l

The only deterministic computations

l are linear functions. l
. . . C' €40,1

A€ {f’ L} Non-linear functions give us Bell 101}

inequalities. |
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Two to T hree

) |
a € {0,1} b€ {0,1} a®b
| ! l
! | |
AEHO,l} Bi{O,l} C e {0,1}
[k |
¥ An AND
GHZ State: (1/v/2)(|000) + |111)) with 100%
probability!
Measurements: 0: X |: Y

/

Output always satisfiess A® B® C = ab



Two to T hree

® |n this three party case, we achieve a clear separation.
Classical correlations: Linear functions
Correlations provide no advantage at all.

Quantum correlations: All functions deterministically

Since AND, XOR, NOT form a universal set.

® |n quantum mechanics, correlations are a
computational resource.
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Classical correlations: Linear functions
Same arguments apply.
Quantum correlations?
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Three to Many?

s there anything beyond all Boolean functions?

Universal quantum computing.



Quantum computing in a nut-shell

In a quantum computer; coherent unitary logic gates act on
quantum bits.



Quantum computing in a nut-shell

qu:erpositiow
T
Entanglement

RUantume measurement /
\\

In a quantum computer; coherent unitary logic gates act on
quantum bits.




Quantum computing in a nut-shell

VA ﬁ'f“‘i
\~5 "’) quaerpositiow
T
Entanglement

RUantume measurement /
\\

In a quantum computer; coherent unitary logic gates act on
quantum bits.

For certain problems (e.g. factoring, simulating quantum physics)
an exponential speedup over best classical algorithm:s.



A very special quantum state

“Cluster state” Lattice of qubits

0000006
000000
000000
®
o

e (Qubits prepared in
”Reoipe” state

forthe  1+)=(10) +1)/V2

state

O 0 000 0
*o0000

A “many-body singlet”
1 0 0 O

Application of an

. . 0O 1 0 O
entangling two-qubit 00 1 0
controlled-Z gate 0 0 0 —1




Measurement-based quantum computing

a (/R OV | SP——.

* With single-qubit measurements "
*on a (large enough) cluster state | —
* (assisted with XOR gates)
*one can iImplement any quantum
computation. ? nformaton fow
I I Y P S G, f 1
A
Quantum correlations are a At - gl | - [
s[4 G| o || s o
resource for quantum AT e
computation. I T T M

X in X-Y plane

Bell inequalities tell us no classical analogue of this effect exists.
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Summary

Classical correlations: No computational utility

Quantum correlations: A rich computational resource

® At the heart of Bell's theorem is Computation.
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