And then there was light: what black hole imaging w/EHT can teach us about particle acceleration

Sera Markoff + EHT MWL WG + EHTC/EAVN/FERMI/HESS/MAGIC/VERITAS + several current/former members of the 'jetsetters' group @ U Amsterdam (C. Ceccobello, K. Chatterjee, A. Chhotray, A. Cooper, P. Crumley, D. v. Eijnatten, C. Hesp, D. Kantzas, M. Liska, M. Lucchini, G. Musoke, T. Russell, D.-S. Yoon) + S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi (UCL!)

The new revolution in (astro)physics: "seeing" black holes

2015: discovery of gravitational waves from merging black holes (2017 Physics Nobel Prize)

LIGO/VIRGO collaboration

The path to establishing 'real' black holes (1918-1963)

H. Curtis 1918: (on the M87 galaxy!!) "A curious straight ray lies in a gap in the nebulosity in p.a. 20 deg, apparently connected with the nucleus by a thin line of matter. The ray is brightest at its inner end, which is 11 arcsec, from the nucleus."

(3C 273 in old optical plate image. Credit: Narlikar 1993)

The path to establishing 'real' black holes (1918-1963)

H. Curtis 1918: (on the M87 galaxy!!) "A curious straight ray lies in a gap in the nebulosity in p.a. 20 deg, apparently connected with the nucleus by a thin line of matter. The ray is brightest at its inner end, which is 11 arcsec, from the nucleus."

The path to establishing 'real' black holes (1918-1963)

(3C 273 in old optical plate image. Credit: Narlikar 1993)

(Schmidt++1963)

★ "Quasar" = Quasi-stellar object, typically (hundreds of) trillions of times more luminous than our sun. E=mc² ► planet/second!

The path to establishing 'real' black holes (1918-1963)

(Schmidt++1963)

★ "Quasar" = Quasi-stellar object, typically (hundreds of) trillions of times more luminous than our sun. E=mc² planet/second!

Hercules A galaxy, Credit: Xray (NASA/CXC/SAO), Optical (NASA/Hubble Space Telescope), Radio (NSF/NRAO/VLA)

New decade, same questions Inner ~100 $r_g = 100 GM/c^2$?

Wind(s?)

Jets

Inner disk

Captured matter spirals inwards via an accretion disk

High energy cosmic rays and ν 's ??

★ Capsule review of EHT's 2017 results on M87 **A** Role of particle acceleration in EHT interpretation 🛧 Outlook & summary: Sgr A* & multi-messenger

Outline

★ Capsule review of EHT's 2017 results on M87 **A** Role of particle acceleration in EHT interpretation **A Outlook & summary: Sgr A* & multi-messenger**

Outline

April 2017 results for M87's supermassive black hole

EHT December 2020: online collaboration meeting group photo

(EHT Collaboration 2019: Papers I - VI; Code comparison paper: Porth, Chatterjee++ 2019)

April 2017 results for M87's supermassive black hole

Reconstructed image

Amplitude (Jy) Visibility

(EHT Collaboration 2019: Papers I - VI; Code comparison paper: Porth, Chatterjee++ 2019)

Measured structure on sky (Fourier power)

(see Johnson++2020; visualisations courtesy M. Johnson & G. Wong. See also e.g., Johannsen & Psaltis 2010; Gralla et al. 2019)

(see Johnson++2020; visualisations courtesy M. Johnson & G. Wong. See also e.g., Johannsen & Psaltis 2010; Gralla et al. 2019)

(see Johnson++2020; visualisations courtesy M. Johnson & G. Wong. See also e.g., Johannsen & Psaltis 2010; Gralla et al. 2019)

Decomposing the blurry ring into astrophysics + GR

(GRMHD simulation D. Yoon; see Yoon, Chatterjee, SM++2020. Using our GPU-accelerated H-AMR code; Liska, Chatterjee++2019)

(see Model & Feature Extraction paper VI; EHT Collaboration 2019)

(For more about GR tests, see: Psaltis, Talbot, Evans & Mandel, subm., arXiv: 2012.02117; Psaltis++ in prep.; see also Gralla++2019)

Capsule review of EHT's 2017 results on M87

A Role of particle acceleration in EHT interpretation

A Outlook & summary: Sgr A* & multi-messenger

Outline

~10% theory 'error' introduced by uncertainties in particle properties

has measurable consequences for multi-wavelength (MWL) properties

EHT Collaboration 2019, Papers V-VI

GRMHD models

Measured size/shape very dependent on the radiating particles, which in turn

2017 M87 Quasi-simultaneous multiwavelength campaign

(EHT Multiwavelength WG, EHTC, EAVN, Fermi, HESS, MAGIC, VERITAS, ApJL, in press.)

2017 M87 Quasi-simultaneous multiwavelength campaign

(EHT Multiwavelength WG, EHTC, EAVN, Fermi, HESS, MAGIC, VERITAS, ApJL, in press.)

2017 M87 Quasi-simultaneous multiwavelength campaign

(EHT Multiwavelength WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN, ApJL, in press)

(EHT Multiwavelength WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN, ApJL, in press)

In 2017 we caught M87 in a historically low state

(EHT Multiwavelength WG, EHTC, EAVN, Fermi, HESS, MAGIC, VERITAS, ApJL, subm.)

Chandra X-ray

In 2017 we caught M87 in a historically low state

(EHT Multiwavelength WG, EHTC, EAVN, Fermi, HESS, MAGIC, VERITAS, ApJL, subm.)

Capsule review of EHT's 2017 results on M87

A Role of particle acceleration in EHT interpretation

Outline

🗙 Outlook & summary: Sgr A* & multi-messenger

The second horizon target (and best studied black hole), Sgr A*!

Roger Penrose

"for the discovery that black hole formation is a robust prediction of the general theory of relativity"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Reinhard Genzel

"for the discovery of a supermassive compact object at the centre of our galaxy"

Andrea

Ghez

Sgr A*: a clear sightline to the innermost accretion flow

2017 EHT MWL Campaign on Sgr A*

Figure courtesy of J.Farah and M.Johnson, on behalf of the EHT MWL WG.

Sgr A*: a clear sightline to the innermost accretion flow

(Dodds-Eden 2009; Witzel++ 2012; 18; Nielsen++ 2013, Nielsen, SM+ + 2015; Do++19)

Can we find the right combination of simulation + microphysics to explain images, MWL spectra and variability??

Sgr A*: a clear sightline to the innermost accretion flow

(GRAVITY++2018)

Can we find the right combination of simulation + microphysics to explain images, MWL spectra and variability??

Recent developments focusing on turbulent plasmoid formation

Ripperda, Bacchini & Philippov 2020, resistive 2D GRMHD w/ effective resolution of 12288x6144

- Plasmoids form from reconnecting current sheets at jet/disk interface
- Electrons inside get heated
- Merge into monster plasmoids or 'hotspots' and are expelled along jet sheath (which orbits in projection)
- and/or produce orbiting flares in inner disk

Recent developments focusing on turbulent plasmoid formation

Ripperda, Bacchini & Philippov 2020, resistive 2D GRMHD w/ effective resolution of 12288x6144

Plasmoids form from

and/or produce orbiting flares in inner disk

New: plasmoid formation in *ideal* 3D-GRMHD on GPUs

5400x2304x2304 with H-AMR (Liska++ 2019) yields similar results as resistive 2D-GRMHD (Ripperda, Liska, Chatterjee, Musoke, Philippov, SM, Younsi, Tchekhovskoy, in prep.)

New: plasmoid formation in *ideal* 3D-GRMHD on GPUs

5400x2304x2304 with H-AMR (Liska++ 2019) yields similar results as resistive 2D-GRMHD (Ripperda, Liska, Chatterjee, Musoke, Philippov, SM, Younsi, Tchekhovskoy, in prep.)

Walker++2018; 5400x2304x2304 with H-AMR (Liska++ 2019) yields (Ripperda, Liska, Chatterjee, Musoke, Philippov, SM, Younsi, Tchekhovskoy, in prep.)

Strategy towards multi-messenger science w/(ng)EHT

- Only a few "coincidences" of neutrino+ γ -ray sources, none particularly bright in γ-rays
- Something special in geometry/ dynamics? Recent VLBI work by Britzen++2019, 2021 is suggestive:

Strategy towards multi-messenger science w/(ng)EHT

- Only a few "coincidences" of
- Britzen++2019, 2021 is suggestive:

Strategy towards multi-messenger science w/(ng)EHT ngEHT

ngEHT Concept Development

Timeline:

- Phase I design (2019-2024)
- Phase II build out and commission (2024-2030)
- **New Stations:** ~10 small aperture (6-10m) dishes at optimized locations.
- **Bandwidth Expansion:** 256 Gb/s (x4)
- **Dual Band Observing:** 1.3mm/0.87mm
- **Data Volumes:** 10-100 PBytes
- High speed data capture and transport: leveraging COTS systems.
- **Data Processing:** x16 computational load
 - Cloud correlation: shifting all processing to a massively parallel platform.
- **Optimizing Algorithms:** Multi-frequency Synthesis, Dynamical Imaging, ...

Astro2020 APC White Paper Studying Black Holes on Horizon Scales with VLBI Ground Arrays

Lindy Blackburn^{1,2,*} Sheperd Doeleman^{1,2,*}, Jason Dexter¹², José L. Gómez¹⁶, Michael D. Johnson^{1,2}, Daniel C. Palumbo^{1,2}, Jonathan Weintroub^{1,2}, Joseph R. Farah^{1,2,21}, Vincent Fish⁴, Laurent Loinard^{18,19}, Colin Lonsdale⁴, Gopal Narayanan²⁸, Nimesh A. Patel², Dominic W. Pesce^{1,2}, Alexander Raymond^{1,2}, Remo Tilanus^{17,22,23}, Maciek Wielgus^{1,2}, Kazunori Akiyama^{1,3,4,5}, Geoffrey Bower⁶, Avery Broderick^{7,8,9}, Roger Deane^{10,11}, Christian Michael Fromm¹³, Charles Gammie^{14,15}, Roman Gold¹³, Michael Janssen¹⁷, Tomohisa Kawashima⁴, Thomas Krichbaum²⁹, Daniel P. Marrone²⁰, Lynn D. Matthews⁴, Yosuke Mizuno¹³, Luciano Rezzolla¹³, Freek Roelofs¹⁷, Eduardo Ros²⁹, Tuomas K. Savolainen^{29,30,31}, Feng Yuan^{24,25,26}, Guangyao Zhao²⁷

Estimated Cost:

- Construction \$140M
- Operation \$13M/year

(Slide 'borrowed' from Shep Doeleman's talk)

Science at the Horizon

Strategy towards multi-messenger science w/(ng)EHT

M87: Transformative ngEHT imaging fidelity

ngEHT Science at the Horizon orizon

eht-imaging

closure phases

5% amplitude calibration

APEX SMA JCMT SMT LMT PV PDB SPT GLT [KP] (no ALMA) SGO KEN NZ CNI CAT BMAC KILI BRZ GLT-S YBG SPX [HAY OVRO] ngEHT sites with zenith SEFD₂₃₀ = 10,000 (8-10m)

Strategy towards multi-messenger science w/(ng)EHT

M87: Transformative ngEHT imaging fidelity

ngEHT Science at the Horizon orizon

- An expanding horizon for testing physics:
- First MWL paper simultaneous with M87 in 2017 (just accepted!) Polarisation imaging and interpretation for M87 (imminent!) Sgr A*: very complicated because of variability but in progress
- Non-horizon AGN sources: 3C279, 3C273, OJ287, Cen A, Mrk501, calibrators...
- Multi-wavelength studies simultaneous with EHT runs
- 2018 data (more info on variability, albeit worse quality)
- Lots and lots of theory papers!! we reduction of main error budget
- 2019 cancelled, 2020 run rescheduled for next month (hopefully)
- Future: larger array=better resolution (ngEHT, AMT, etc.), space VLBI !!

Summary

X EHT's images probe 'hairy' accretion, jet launching, strong-field gravity effects at near horizon scales...and particle acceleration!

 \star Ability to test GR closely linked to understanding how particles are energised in plasmas 🕪 EHT + Multiwavelength (MWL)

 \star Cutting edge in theoretical modelling: physical-scale simulations with extremely high resolution **predict** *multi-messenger* properties

 \star (ng)EHT promises exciting times ahead: expanded ground array, space, movies of black holes, black hole demographics

